Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lawrence J. Bonassar is active.

Publication


Featured researches published by Lawrence J. Bonassar.


Biofabrication | 2012

Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds

Laura A. Hockaday; Kevin H. Kang; N W Colangelo; P Y C Cheung; Bin Duan; E Malone; J Wu; Leonard N. Girardi; Lawrence J. Bonassar; Hod Lipson; C C Chu; Jonathan T. Butcher

The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for the long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12-22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over tenfold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 min, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0 and 73.3±5.2% for 22, 17 and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6 and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment.


Journal of Biomedical Materials Research | 2001

Injection molding of chondrocyte/alginate constructs in the shape of facial implants

Sophia Chia-Ning Chang; Jon A. Rowley; Geoffrey Tobias; Nicholas G. Genes; Amit K. Roy; David J. Mooney; Charles A. Vacanti; Lawrence J. Bonassar

Over one million patients per year undergo some type of procedure involving cartilage reconstruction. Polymer hydrogels, such as alginate, have been shown to be effective carriers for chondrocytes in subcutaneous cartilage formation. The goal of our current study was to develop a method to create complex structures (nose bridge, chin, etc.) with good dimensional tolerance to form cartilage in specific shapes. Molds of facial implants were prepared using Silastic ERTV. Suspensions of chondrocytes in 2% alginate were gelled by mixing with CaSO(4) (0.2 g/mL) and injected into the molds. Constructs of various cell concentrations (10, 25, and 50 million/mL) were implanted in the dorsal aspect of nude mice and harvested at times up to 30 weeks. Analysis of implanted constructs indicated progressive cartilage formation with time. Proteoglycan and collagen constructs increased with time to approximately 60% that of native tissue. Equilibrium modulus likewise increased with time to 15% that of normal tissue, whereas hydraulic permeability decreased to 20 times that of native tissue. Implants seeded with greater concentrations of cells increased proteoglycan content and collagen content and equilibrium and decreased permeability. Production of shaped cartilage implants by this technique presents several advantages, including good dimensional tolerance, high sample-to-sample reproducibility, and high cell viability. This system may be useful in the large-scale production of precisely shaped cartilage implants.


Journal of Biomechanics | 1995

The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression

Young-Jo Kim; Lawrence J. Bonassar; Alan J. Grodzinsky

The effects of streaming potential, fluid flow and hydrostatic pressure on chondrocyte biosynthesis were studied by comparing the spatial profiles of these physical stimuli to the profiles of biosynthesis within cartilage disks subjected to dynamic unconfined compression. The radial streaming potential was measured using compression frequencies and disk sizes relevant to studies of physical modulation of cartilage metabolism; a general analytical solution to the unconfined compression of a poroelastic cylinder with impermeable, rigid, adhesive platens was derived using potential theory. The solution with adhesive platen boundary conditions, using measured values of cartilage material properties, predicted streaming potentials that were much closer to experimental results between 0.001 and 1 Hz than a solution using frictionless platen boundary conditions. The predicted radial profiles of streaming potential gradient and fluid velocity (but not hydrostatic pressure) were similar to the previously reported radial dependence of proteoglycan synthesis induced by dynamic unconfined compression. Changes in stiffness associated with reduction of disk diameter suggested that the relative contributions of collagen and proteoglycans to cartilage mechanical properties may be a function of loading frequency in unconfined compression; such anisotropies may explain the remaining discrepencies between measured stiffness and stiffness predicted by the present model.


Biotechnology Progress | 2000

Comparison of Chondrogensis in Static and Perfused Bioreactor Culture

David Pazzano; Kathi A. Mercier; John M. Moran; Stephen S. Fong; David DiBiasio; Jill Rulfs; Sean S. Kohles; Lawrence J. Bonassar

As a result of the low yield of cartilage from primary patient harvests and a high demand for autologous cartilage for reconstructive surgery and structural repair, primary explant cartilage must be augmented by tissue engineering techniques. In this study, chondrocytes seeded on PLLA/PGA scaffolds in static culture and a direct perfusion bioreactor were biochemically and histologically analyzed to determine the effects of fluid flow and media pH on matrix assembly. A gradual media pH change was maintained in the bioreactor within 7.4−6.96 over 2 weeks compared to a more rapid decrease from 7.4 to 6.58 in static culture over 3 days. Seeded scaffolds subjected to 1 μm/s flow demonstrated a 118% increase (p < 0.05) in DNA content, a 184% increase (p < 0.05) in GAG content, and a 155% (p< 0.05) increase in hydroxyproline content compared to static culture. Distinct differences were noted in tissue morphology, including more intense staining for proteoglycans by safranin‐O and alignment of cells in the direction of media flow. Culture of chondrocyte seeded matrices thus offers the possibility of rapid in vitro expansion of donor cartilage for the repair of structural defects, tracheal injury, and vascularized tissue damage.


Journal of Cellular Biochemistry | 1998

Tissue engineering: the first decade and beyond.

Lawrence J. Bonassar; Charles A. Vacanti

This article reviews the important developments in the field of tissue engineering over the last 10 years. Research in the area of biomaterials is examined from the perspective of providing the foundation for the development of tissue engineering. Early efforts combining cells with biocompatible materials are described and applications of this technology presented, with particular focus on uses in orthopaedics and maxillofacial surgery. The basic principles of tissue engineering and state‐of‐the‐art technology in cell biology and materials science as used currently in the field are presented. Finally, futures challenges are outlined from the perspective of integrating technologies from medicine, biology, and engineering, in hopes of translating tissue engineering to clinical applications. J. Cell. Biochem. Suppls. 30/31:297–303, 1998.


Journal of Orthopaedic Research | 2001

The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I

Lawrence J. Bonassar; Alan J. Grodzinsky; Eliot H. Frank; Salomon G. Davila; Nirav R. Bhaktav; Stephen B. Trippel

Articular cartilage is routinely subjected to mechanical forces and to cell‐regulatory molecules. Previous studies have shown that mechanical stimuli can influence articular chondrocyte metabolic activity, and biochemical studies have shown that growth factors and cytokines control many of the same cell functions. Little is known, however, of the relationships or interplay, if any, between these two key components of the articular environment. This study investigated the comparative and interactive effects of low amplitude, sinusoidal, dynamic compression and insulin‐like growth factor‐I (IGF‐I), a polypeptide in synovial fluid that is anabolic for cartilage. In bovine patellofemoral cartilage explants, IGF‐I increased protein and proteoglycan synthesis 90% and 120%, respectively while dynamic compression increased protein and proteoglycan synthesis 40% and 90%, respectively. Stimulation by IGF‐I was significantly greater than by dynamic compression for both protein and proteoglycan synthesis. When applied together, the two stimuli enhanced protein and proteoglycan synthesis by 180% and 290%, respectively, a degree greater than that achieved by either stimulus alone. IGF‐I augmented protein synthesis with a time constant of 12.2 h. Dynamic compression increased protein synthesis with a time constant of 2.9 h, a rate significantly faster than that of IGF‐I, suggesting that these signals act via distinct cell activation pathways. When used together, dynamic compression and IGF‐I acted with a time constant of 5.6 h. Thus, dynamic compression accelerated the biosynthetic response to IGF‐I and increased transport of IGF‐I into the articular cartilage matrix, suggesting that, in addition to independently stimulating articular chondrocytes, cyclic compression may improve the access of soluble growth factors to these relatively isolated cells.


Biomaterials | 2010

Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro

Valerie L. Cross; Ying Zheng; Nakwon Choi; Scott S. Verbridge; Bryan A. Sutermaster; Lawrence J. Bonassar; Claudia Fischbach; Abraham D. Stroock

Type I collagen is a favorable substrate for cell adhesion and growth and is remodelable by many tissue cells; these characteristics make it an attractive material for the study of dynamic cellular processes. Low mass fraction (1.0-3.0 mg/ml), hydrated collagen matrices used for three-dimensional cell culture permit cellular movement and remodeling, but their microstructure and mechanics fail to mimic characteristics of many extracellular matrices in vivo and limit the definition of fine-scale geometrical features (<1 mm) within scaffolds. In this study, we worked with hydrated type I collagen at mass fractions between 3.0 and 20 mg/ml to define the range of densities over which the matrices support both microfabrication and cellular remodeling. We present pore and fiber dimensions based on confocal microscopy and longitudinal modulus and hydraulic permeability based on confined compression. We demonstrate faithful reproduction of simple pores of 50 μm-diameter over the entire range and formation of functional microfluidic networks for mass fractions of at least 10.0 mg/ml. We present quantitative characterization of the rate and extent of cellular remodelability using human umbilical vein endothelial cells. Finally, we present a co-culture with tumor cells and discuss the implications of integrating microfluidic control within scaffolds as a tool to study spatial and temporal signaling during tumor angiogenesis and vascularization of tissue engineered constructs.


Spine | 2004

Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement.

Hirokazu Mizuno; Amit K. Roy; Charles A. Vacanti; Koji Kojima; Minoru Ueda; Lawrence J. Bonassar

Study Design. By the technique of tissue engineering, composite intervertebral disc implants were fabricated as novel materials for disc replacement, implanted into athymic mice, and removed at times up to 12 weeks. Objectives. The goal of this study was to construct composite intervertebral disc structures consisting of anulus fibrosus cells and nucleus pulposus cells seeded on polyglycolic acid and calcium alginate matrices, respectively. Summary of Background Data. Previous work has documented the growth of anulus fibrosus cells on collagen matrices and nucleus pulposus cells cultured on multiple matrices, but there is no documentation of composite disc implants. Methods. Lumbar intervertebral discs were harvested from sheep spine, and the nucleus pulposus was separated from surrounding anulus fibrosus. Each tissue was digested in collagenase type II. After 3 weeks in culture, cells were seeded into implants. The shape of the anulus fibrosus scaffold was fabricated from polyglycolic acid and polylactic acid, and anulus fibrosus cells were pipetted onto the scaffold and allowed to attach for 1 day. Nucleus pulposus cells were suspended in 2% alginate and injected into the center of the anulus fibrosus. The disc implants were placed in the subcutaneous space of the dorsum of athymic mice and harvested at 4, 8, and 12 weeks. At each time point, 4 samples were stored in −70 C for collagen typing and analysis of proteoglycan, hydroxyproline, and DNA. Other samples were fixed in 10% formalin for Safranin-O staining. Results. The gross morphology and histology of engineered discs strongly resembled those of native intervertebral discs. Biochemical markers of matrix synthesis were present, increasing with time, and were similar to native tissue at 12 weeks. Tissue-engineered anulus fibrosus was rich in type I collagen but nucleus pulposus contained type II collagen, similar to the native disc. Conclusion. These results demonstrate the feasibility of creating a composite intervertebral disc with both anulusfibrosus and nucleus pulposus for clinical applications.


Arthritis & Rheumatism | 2009

Prevention of Cartilage Degeneration in a Rat Model of Osteoarthritis by Intraarticular Treatment With Recombinant Lubricin

Carl R. Flannery; Richard Zollner; Chris Corcoran; Aled R.C. Jones; Adam Root; Moisés A. Rivera-Bermúdez; Tracey Blanchet; Jason P. Gleghorn; Lawrence J. Bonassar; Alison Bendele; E.A. Morris; S.S. Glasson

OBJECTIVE Lubricin, also referred to as superficial zone protein and PRG4, is a synovial glycoprotein that supplies a friction-resistant, antiadhesive coating to the surfaces of articular cartilage, thereby protecting against arthritis-associated tissue wear and degradation. This study was undertaken to generate and characterize a novel recombinant lubricin protein construct, LUB:1, and to evaluate its therapeutic efficacy following intraarticular delivery in a rat model of osteoarthritis (OA). METHODS Binding and localization of LUB:1 to cartilage surfaces was assessed by immunohistochemistry. The cartilage-lubricating properties of LUB:1 were determined using a custom friction testing apparatus. A cell-binding assay was performed to quantify the ability of LUB:1 to prevent cell adhesion. Efficacy studies were conducted in a rat meniscal tear model of OA. One week after the surgical induction of OA, LUB:1 or phosphate buffered saline vehicle was administered by intraarticular injection for 4 weeks, with dosing intervals of either once per week or 3 times per week. OA pathology scores were determined by histologic analysis. RESULTS LUB:1 was shown to bind effectively to cartilage surfaces, and facilitated both cartilage boundary lubrication and inhibition of synovial cell adhesion. Treatment of rat knee joints with LUB:1 resulted in significant disease-modifying, chondroprotective effects during the progression of OA, by markedly reducing cartilage degeneration and structural damage. CONCLUSION Our findings demonstrate the potential use of recombinant lubricin molecules in novel biotherapeutic approaches to the treatment of OA and associated cartilage abnormalities.


The FASEB Journal | 2003

A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells

Koji Kojima; Lawrence J. Bonassar; Amit K. Roy; Hirokazu Mizuno; Joaquin Cortiella; Charles A. Vacanti

This study evaluates the feasibility of producing a composite engineered tracheal equivalent composed of cylindrical cartilaginous structures with lumens lined with nasal epithelial cells. Chondrocytes and epithelial cells isolated from sheep nasal septum were cultured in Hams F12 media. After 2 wk, chondrocyte suspensions were seeded onto a matrix of polyglycolic acid. Cell‐polymer constructs were wrapped around silicon tubes and cultured in vitro for 1 wk, followed by implanting into subcutaneous pockets on the backs of nude mice. After 6 wk, epithelial cells were suspended in a hydrogel and injected into the embedded cartilaginous cylinders following removal of the silicon tube. Implants were harvested 4 wk later and analyzed. The morphology of implants resembles that of native sheep trachea. H&E staining shows the presence of mature cartilage and formation of a pseudostratified columnar epithelium, with a distinct interface between tissue‐engineered cartilage and epithelium. Safranin‐O staining shows that tissue‐engineered cartilage is organized into lobules with round, angular lacunae, each containing a single chondrocyte. Proteoglycan and hydroxyproline contents are similar to native cartilage. This study demonstrates the feasibility of recreating the cartilage and epithelial portion of the trachea using tissue harvested in a single procedure. This has the potential to facilitate an autologous repair of segmental tracheal defects.—Kojima, K., Bonassar, L. J., Roy, A. K., Mizuno, H., Cortiella, J., Vacanti, C. A. A composite tissue‐engineered trachea using sheep nasal chondrocyte and epithelial cells. FASEB J. 17, 823–828 (2003)

Collaboration


Dive into the Lawrence J. Bonassar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles A. Vacanti

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit K. Roy

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge