Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Itai Cohen is active.

Publication


Featured researches published by Itai Cohen.


Science | 2014

Using origami design principles to fold reprogrammable mechanical metamaterials

Jesse L. Silverberg; Arthur A. Evans; Lauren McLeod; Ryan C. Hayward; Thomas C. Hull; Christian D. Santangelo; Itai Cohen

Folding robots and metamaterials The same principles used to make origami art can make self-assembling robots and tunable metamaterials—artificial materials engineered to have properties that may not be found in nature (see the Perspective by You). Felton et al. made complex self-folding robots from flat templates. Such robots could potentially be sent through a collapsed building or tunnels and then assemble themselves autonomously into their final functional form. Silverberg et al. created a mechanical metamaterial that was folded into a tessellated pattern of unit cells. These cells reversibly switched between soft and stiff states, causing large, controllable changes to the way the material responded to being squashed. Science, this issue p. 644, p. 647; see also p. 623 Origami folded sheets can be structurally altered by adding defects to control the mechanical properties. [Also see Perspective by You] Although broadly admired for its aesthetic qualities, the art of origami is now being recognized also as a framework for mechanical metamaterial design. Working with the Miura-ori tessellation, we find that each unit cell of this crease pattern is mechanically bistable, and by switching between states, the compressive modulus of the overall structure can be rationally and reversibly tuned. By virtue of their interactions, these mechanically stable lattice defects also lead to emergent crystallographic structures such as vacancies, dislocations, and grain boundaries. Each of these structures comes from an arrangement of reversible folds, highlighting a connection between mechanical metamaterials and programmable matter. Given origami’s scale-free geometric character, this framework for metamaterial design can be directly transferred to milli-, micro-, and nanometer-size systems.


Science | 2011

Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions

Xiang Cheng; Jonathan McCoy; Jacob N. Israelachvili; Itai Cohen

Confocal microscopy reveals changes in structures formed by suspended particles under different flow conditions. The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension’s structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.


Nature | 2006

Visualizing dislocation nucleation by indenting colloidal crystals

Peter Schall; Itai Cohen; David A. Weitz; F. Spaepen

The formation of dislocations is central to our understanding of yield, work hardening, fracture, and fatigue of crystalline materials. While dislocations have been studied extensively in conventional materials, recent results have shown that colloidal crystals offer a potential model system for visualizing their structure and dynamics directly in real space. Although thermal fluctuations are thought to play a critical role in the nucleation of these defects, it is difficult to observe them directly. Nano-indentation, during which a small tip deforms a crystalline film, is a common tool for introducing dislocations into a small volume that is initially defect-free. Here, we show that an analogue of nano-indentation performed on a colloidal crystal provides direct images of defect formation in real time and on the single particle level, allowing us to probe the effects of thermal fluctuations. We implement a new method to determine the strain tensor of a distorted crystal lattice and we measure the critical dislocation loop size and the rate of dislocation nucleation directly. Using continuum models, we elucidate the relation between thermal fluctuations and the applied strain that governs defect nucleation. Moreover, we estimate that although bond energies between particles are about fifty times larger in atomic systems, the difference in attempt frequencies makes the effects of thermal fluctuations remarkably similar, so that our results are also relevant for atomic crystals.


Nature Materials | 2015

Origami structures with a critical transition to bistability arising from hidden degrees of freedom

Jesse L. Silverberg; Jun-Hee Na; Arthur A. Evans; Bin Liu; Thomas C. Hull; Christian D. Santangelo; Robert J. Lang; Ryan C. Hayward; Itai Cohen

Origami is used beyond purely aesthetic pursuits to design responsive and customizable mechanical metamaterials. However, a generalized physical understanding of origami remains elusive, owing to the challenge of determining whether local kinematic constraints are globally compatible and to an incomplete understanding of how the folded sheets material properties contribute to the overall mechanical response. Here, we show that the traditional square twist, whose crease pattern has zero degrees of freedom (DOF) and therefore should not be foldable, can nevertheless be folded by accessing bending deformations that are not explicit in the crease pattern. These hidden bending DOF are separated from the crease DOF by an energy gap that gives rise to a geometrically driven critical bifurcation between mono- and bistability. Noting its potential utility for fabricating mechanical switches, we use a temperature-responsive polymer-gel version of the square twist to demonstrate hysteretic folding dynamics at the sub-millimetre scale.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles

Leif Ristroph; Attila Bergou; Gunnar Ristroph; Katherine Coumes; Gordon Berman; John Guckenheimer; Z. Jane Wang; Itai Cohen

Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Implanted adipose progenitor cells as physicochemical regulators of breast cancer

Emily M. Chandler; Bo Ri Seo; Joseph P. Califano; Roberto C. Andresen Eguiluz; Jason S. Lee; Christine J. Yoon; David T. Tims; James X. Wang; Le Cheng; Sunish Mohanan; Mark R. Buckley; Itai Cohen; Alexander Yu. Nikitin; Rebecca M. E. Williams; Delphine Gourdon; Cynthia A. Reinhart-King; Claudia Fischbach

Multipotent adipose-derived stem cells (ASCs) are increasingly used for regenerative purposes such as soft tissue reconstruction following mastectomy; however, the ability of tumors to commandeer ASC functions to advance tumor progression is not well understood. Through the integration of physical sciences and oncology approaches we investigated the capability of tumor-derived chemical and mechanical cues to enhance ASC-mediated contributions to tumor stroma formation. Our results indicate that soluble factors from breast cancer cells inhibit adipogenic differentiation while increasing proliferation, proangiogenic factor secretion, and myofibroblastic differentiation of ASCs. This altered ASC phenotype led to varied extracellular matrix (ECM) deposition and contraction thereby enhancing tissue stiffness, a characteristic feature of breast tumors. Increased stiffness, in turn, facilitated changes in ASC behavior similar to those observed with tumor-derived chemical cues. Orthotopic mouse studies further confirmed the pathological relevance of ASCs in tumor progression and stiffness in vivo. In summary, altered ASC behavior can promote tumorigenesis and, thus, their implementation for regenerative therapy should be carefully considered in patients previously treated for cancer.


The Journal of Experimental Biology | 2009

Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects

Leif Ristroph; Gordon Berman; Attila Bergou; Z. J. Wang; Itai Cohen

SUMMARY Flying insects perform aerial maneuvers through slight manipulations of their wing motions. Because such manipulations in wing kinematics are subtle, a reliable method is needed to properly discern consistent kinematic strategies used by the insect from inconsistent variations and measurement error. Here, we introduce a novel automated method that accurately extracts full, 3D body and wing kinematics from high-resolution films of free-flying insects. This method combines visual hull reconstruction, principal components analysis, and geometric information about the insect to recover time series data of positions and orientations. The technique has small, well-characterized errors of under 3 pixels for positions and 5 deg. for orientations. To show its utility, we apply this motion tracking to the flight of fruit flies, Drosophila melanogaster. We find that fruit flies generate sideways forces during some maneuvers and that strong lateral acceleration is associated with differences between the left and right wing angles of attack. Remarkably, this asymmetry can be induced by simply altering the relative timing of flips between the right and left wings, and we observe that fruit flies employ timing differences as high as 10% of a wing beat period while accelerating sideways at 40% g.


Physical Review Letters | 1999

TWO FLUID DROP SNAP-OFF PROBLEM : EXPERIMENTS AND THEORY

Itai Cohen; Michael P. Brenner; Jens Eggers; Sidney R. Nagel

We address the dynamics of a drop with viscosity


Journal of Biomechanics | 2009

Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content

Arthur J. Michalek; Mark R. Buckley; Lawrence J. Bonassar; Itai Cohen; James C. Iatridis

\ensuremath{\lambda}\ensuremath{\eta}


Physical Review Letters | 2004

Shear-Induced Configurations of Confined Colloidal Suspensions

Itai Cohen; Thomas G. Mason; David A. Weitz

breaking up inside another fluid of viscosity

Collaboration


Dive into the Itai Cohen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian D. Santangelo

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Cheng

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge