Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susan R. Pfeffer is active.

Publication


Featured researches published by Susan R. Pfeffer.


Nature | 1999

NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase

Osman N. Ozes; Lindsey D. Mayo; Jason A. Gustin; Susan R. Pfeffer; Lawrence M. Pfeffer; David B. Donner

Activation of the nuclear transcription factor NF-κB by inflammatory cytokines requires the successive action of NF-κB-inducing kinase (NIK) and an IκB-kinase (IKK) complex composed of IKKα and IKKβ. Here we show that the Akt serine–threonine kinase is involved in the activation of NF-κB by tumour necrosis factor (TNF). TNF activates phosphatidylinositol-3-OH kinase (PI(3)K) and its downstream target Akt (protein kinase B). Wortmannin (a PI(3)K inhibitor), dominant-negative PI(3)K or kinase-dead Akt inhibits TNF-mediated NF-κB activation. Constitutively active Akt induces NF-κB activity and this effect is blocked by dominant-negative NIK. Conversely, NIK activates NF-κB and this is blocked by kinase-dead Akt. Thus, both Akt and NIK are necessary for TNF activation of NF-κB. Akt mediates IKKα phosphorylation at threonine 23. Mutation of this amino acid blocks phosphorylation by Akt or TNF and activation of NF-κB. These findings indicate that Akt is part of a signalling pathway that is necessary for inducing key immune and inflammatory responses.


Journal of Biological Chemistry | 2001

Interferon α/β Promotes Cell Survival by Activating Nuclear Factor κB through Phosphatidylinositol 3-Kinase and Akt

Chuan He Yang; Aruna Murti; Susan R. Pfeffer; Jong G. Kim; David B. Donner; Lawrence M. Pfeffer

Interferons (IFNs) play critical roles in host defense by modulating gene expression via activation of signal transducer and activator of transcription (STAT) factors. IFN-α/β also activates another transcription factor, nuclear factor κB (NF-κB), which protects cells against apoptotic stimuli. NF-κB activation requires the IFN-dependent association of STAT3 with the IFNAR1 chain of the IFN receptor. IFN-dependent NF-κB activation involves the sequential activation of a serine kinase cascade involving phosphatidylinositol 3-kinase (PI-3K) and Akt. Whereas constitutively active PI-3K and Akt induce NF-κB activation, Ly294002 (a PI-3K inhibitor), dominant-negative PI-3K, and kinase-dead Akt block IFN-dependent NF-κB activation. Moreover, dominant-negative PI-3K blocks IFN-promoted degradation of κBox α. Ly294002, a dominant-negative PI-3K construct, and kinase-dead Akt block IFN-promoted cell survival, enhancing apoptotic cell death. Therefore, STAT3, PI-3K, and Akt are components of an IFN signaling pathway that promotes cell survival through NF-κB activation.


Journal of Biological Chemistry | 2011

MicroRNA miR-21 Regulates the Metastatic Behavior of B16 Melanoma Cells

Chuan He Yang; Junming Yue; Susan R. Pfeffer; Charles R. Handorf; Lawrence M. Pfeffer

Background: miRNAs are involved in many critical biological processes. Results: miR-21 induction is STAT3-dependent, and miR-21 knockdown inhibited melanoma cell proliferation and migration and enhanced apoptosis. Although B16 cells produced large lung metastases in mice, miR-21 knockdown cells only formed small lung lesions. Conclusion: miR-21 regulates the metastatic behavior of melanoma. Significance: miR-21 is identified as a potential drug target in melanoma. MicroRNA-21 (miR-21) is overexpressed in many human tumors and has been linked to various cellular processes altered in cancer. miR-21 is also up-regulated by a number of inflammatory agents, including IFN, which is of particular interest considering the close relationship between inflammation and cancer. Because miR-21 appears to be overexpressed in human melanoma, we examined the role of miR-21 in cancer development and metastasis in B16 mouse melanoma cells. We found that miR-21 is a member of an IFN-induced miRNA subset that requires STAT3 activation. To characterize the role of miR-21 in melanoma behavior, we transduced B16 cells with lentivirus encoding a miR-21 antagomir and isolated miR-21 knockdown B16 cells. miR-21 knockdown or IFN treatment alone inhibited B16 cell proliferation and migration in vitro, and in combination they had an enhanced effect. Moreover, miR-21 knockdown sensitized B16 cells to IFN-induced apoptosis. In B16 cells miR-21 targeted tumor suppressor (PTEN and PDCD4) and antiproliferative (BTG2) proteins. To characterize the role of miR-21 in vivo, empty vector- and antagomiR-21-transduced B16 melanoma cells were injected via tail vein into syngeneic C57BL/6 mice. Although empty vector-transduced B16 cells produced large lung metastases, miR-21 knockdown cells only formed small lung lesions. Importantly, miR-21 knockdown tumor-bearing mice exhibited prolonged survival compared with empty vector tumor-bearing mice. Thus, miR-21 regulates the metastatic behavior of B16 melanoma cells by promoting cell proliferation, survival, and migration/invasion as well as by suppressing IFN action, providing important new insights into the role of miR-21 in melanoma.


Journal of Cellular Biochemistry | 2007

Non‐conventional signal transduction by type 1 interferons: The NF‐κB pathway

Ziyun Du; Lai Wei; Aruna Murti; Susan R. Pfeffer; Meiyun Fan; Chuan He Yang; Lawrence M. Pfeffer

Type I interferons (IFNs) regulate diverse cellular functions by modulating the expression of IFN‐stimulated genes (ISGs) through the activation of the well established signal transduction pathway of the Janus Kinase (JAK) and signal transducers and activators of transcription (STAT) proteins. Although the JAK–STAT signal transduction pathway is critical in mediating IFNs antiviral and antiproliferative activities, other signaling pathways are activated by IFNs and regulate cellular response to IFN. The NF‐κB transcription factor regulates the expression of genes involved in cell survival and immune responses. We have identified a novel IFN mediated signal pathway that leads to NF‐κB activation and demonstrate that a subset of ISGs that play key roles in cellular response to IFN is regulated by NF‐κB. This review focuses on the IFN‐induced NF‐κB activation pathway and the role of NF‐κB in ISG expression, antiviral activity and apoptosis, and the therapeutic application of IFN in cancer and infectious disease. J. Cell. Biochem. 102: 1087–1094, 2007.


Journal of Biological Chemistry | 1997

The Short Form of the Interferon α/β Receptor Chain 2 Acts as a Dominant Negative for Type I Interferon Action

Lawrence M. Pfeffer; Leela Basu; Susan R. Pfeffer; Chuan He Yang; Aruna Murti; Dean Russell-Harde; Ed Croze

We have characterized the functional properties of the short form of the human interferon α/β receptor chain 2 (IFNAR2), denoted IFNAR2.1. IFNAR2.1 contains a shortened cytoplasmic domain when compared with the recently cloned full-length IFNAR2 chain (IFNAR2.2). We show that IFNα8 and IFNβ1b induce antiviral and antiproliferative activity in mouse cell transfectants expressing the human IFNAR1 chain of the receptor and induce the formation of STAT1/STAT2 dimers in IFN-stimulated response element (ISRE)-dependent gel shift assays. In contrast, coexpression of IFNAR2.1 with IFNAR1 reduces the IFN-induced antiviral, antiproliferative and ISRE-dependent gel shift binding activity conferred by IFNAR1 alone. No antiviral or antiproliferative response to IFN, nor IFN-induced ISRE-dependent gel shift binding activity, was observed when IFNAR2.1 was expressed alone in murine cells. Therefore, IFNAR2.1 acts as a dominant negative for these IFN-induced activities. Our results suggest that IFNAR2.1 represents a nonfunctional version of the full-length chain (IFNAR2.2).


Journal of Biological Chemistry | 2014

MicroRNA-21 Promotes Glioblastoma Tumorigenesis by Down-regulating Insulin-like Growth Factor-binding Protein-3 (IGFBP3)

Chuan He Yang; Junming Yue; Susan R. Pfeffer; Meiyun Fan; Elena M. Paulus; Amira Hosni-Ahmed; Michelle Sims; Sohail Qayyum; Andrew M. Davidoff; Charles R. Handorf; Lawrence M. Pfeffer

Background: miR-21 is overexpressed in many human cancers, including glioblastoma. Results: Insulin-like growth factor (IGF)-binding protein-3 (IGFBP3) is a novel miR-21 target gene and inhibits gliomagenesis in vitro and in vivo. Conclusion: miR-21 down-regulates IGFBP3, which acts as a tumor suppressor in human glioblastoma. Significance: IGFBP3 may have promise as a therapeutic target and prognostic marker for glioblastoma. Despite advances in surgery, imaging, chemotherapy, and radiation, patients with glioblastoma multiforme (GBM), the most common histological subtype of glioma, have an especially dismal prognosis; >70% of GBM patients die within 2 years of diagnosis. In many human cancers, the microRNA miR-21 is overexpressed, and accumulating evidence indicates that it functions as an oncogene. Here, we report that miR-21 is overexpressed in human GBM cell lines and tumor tissue. Moreover, miR-21 expression in GBM patient samples is inversely correlated with patient survival. Knockdown of miR-21 in GBM cells inhibited cell proliferation in vitro and markedly inhibited tumor formation in vivo. A number of known miR-21 targets have been identified previously. By microarray analysis, we identified and validated insulin-like growth factor (IGF)-binding protein-3 (IGFBP3) as a novel miR-21 target gene. Overexpression of IGFBP3 in glioma cells inhibited cell proliferation in vitro and inhibited tumor formation of glioma xenografts in vivo. The critical role that IGFBP3 plays in miR-21-mediated actions was demonstrated by a rescue experiment, in which IGFBP3 knockdown in miR-21KD glioblastoma cells restored tumorigenesis. Examination of tumors from GBM patients showed that there was an inverse relationship between IGFBP3 and miR-21 expression and that increased IGFBP3 expression correlated with better patient survival. Our results identify IGFBP3 as a novel miR-21 target gene in glioblastoma and suggest that the oncogenic miRNA miR-21 down-regulates the expression of IGFBP3, which acts as a tumor suppressor in human glioblastoma.


Journal of Biological Chemistry | 2015

The Oncogenic MicroRNA-21 Inhibits the Tumor Suppressive Activity of FBXO11 to Promote Tumorigenesis

Chuan He Yang; Susan R. Pfeffer; Michelle Sims; Junming Yue; Yinan Wang; Vijay Gandhi Linga; Elena M. Paulus; Andrew M. Davidoff; Lawrence M. Pfeffer

Background: miR-21 is overexpressed in many human cancers. Results: FBXO11 (a member of the F-box subfamily lacking a distinct unifying domain) is a novel miR-21 target gene, and inhibits tumorigenesis. Conclusion: miR-21 down-regulates FBXO11 which acts as a tumor suppressor in melanoma, prostate cancer and glioblastoma. Significance: FBXO11 may have promise as a therapeutic target, and as a diagnostic and prognostic marker in cancer. The microRNA miR-21 is overexpressed in most human cancers and accumulating evidence indicates that it functions as an oncogene. Since miRNAs suppress the expression of their target genes, we hypothesized that some miR-21 targets may act as tumor suppressors, and thus their expression would be anticipated to be reduced by the high miR-21 levels observed in various human cancers. By microarray analysis and quantitative PCR we identified and validated FBXO11 (a member of the F-box subfamily lacking a distinct unifying domain) as a miR-21 target gene. FBXO11 is a component of the SKP1-CUL1-F-box ubiquitin ligase complex that targets proteins for ubiquitination and proteosomal degradation. By loss of function and gain of function studies, we show that FBXO11 acts as a tumor suppressor, promotes apoptosis and mediates the degradation of the oncogenic protein BCL6. The critical role that FBXO11 plays in miR-21-mediated tumorigenesis was demonstrated by a rescue experiment, in which silencing FBXO11 in miR-21KD cancer cells restored their high tumorigenicity. Expression of miR-21 and FBXO11 are inversely correlated in tumor tissue, and their expression correlates with patient survival and tumor grade. High FBXO11 expression correlates with better patient survival and lower tumor grade consistent with its tumor suppressor activity. In contrast high miR-21 expression, which correlates with poor patient survival and higher tumor grade, is consistent with its oncogenic activity. Our results identify FBXO11 as a novel miR-21 target gene, and demonstrate that the oncogenic miRNA miR-21 decreases the expression of FBXO11, which normally acts as a tumor suppressor, and thereby promotes tumorigenesis.


Drug Development Research | 2015

The Role of miR‐21 in Cancer

Susan R. Pfeffer; Chuan He Yang; Lawrence M. Pfeffer

Preclinical Research


Journal of Immunology | 2007

Identification of CXCL11 as a STAT3-Dependent Gene Induced by IFN

Chuan He Yang; Lai Wei; Susan R. Pfeffer; Ziyun Du; Aruna Murti; William J. Valentine; Yi Zheng; Lawrence M. Pfeffer

IFNs selectively regulate gene expression through several signaling pathways. The present study explored the involvement of STAT3 in the IFN-induced expression of the gene encoding the CXCL11 chemokine. The CXCL11 gene was induced in IFN-sensitive Daudi cells, but not in an IFN-resistant DRST3 subline with a defective STAT3 signaling pathway. Although the IFN-stimulated gene ISG15 was induced to a similar extent in Daudi and DRST3 cells, expression of wild-type STAT3 in DRST3 cells restored the IFN inducibility of CXCL11. Reconstitution of STAT3 knockout mouse embryonic fibroblasts with wild-type STAT3, or STAT3 with the canonical STAT3 dimerization site at Y705 mutated, restored IFN inducibility of the CXCL11 gene. These data indicate that CXCL11 gene induction by IFN is STAT3 dependent, but that phosphorylation of Y705 of STAT3 is not required. Chromatin immunoprecipitation assays demonstrated that IFN treatment of Daudi and DRST3 cells induced STAT3 binding to the CXCL11 promoter. Chromatin immunoprecipitation assays also revealed that NF-κB family member p65 and IFN regulatory factor (IRF)1 were bound to CXCL11 promoter upon IFN treatment of Daudi cells. In contrast, IFN induced the binding of p50 and IRF2 to the CXCL11 promoter in DRST3 cells. The profile of promoter binding was indistinguishable in IFN-sensitive Daudi cells and DRST3 cells reconstituted with wild-type STAT3. Thus, STAT3 also plays a role in the recruitment of the transcriptional activators p65 and IRF1, and the displacement of the transcriptional repressors p50 and IRF2 from the CXCL11 promoter also appears to regulate the induction of CXCL11 gene transcription.


Journal of Clinical Medicine | 2015

Detection of Exosomal miRNAs in the Plasma of Melanoma Patients.

Susan R. Pfeffer; Kenneth F. Grossmann; Pamela B. Cassidy; Chuan He Yang; Meiyun Fan; Levy Kopelovich; Sancy A. Leachman; Lawrence M. Pfeffer

MicroRNAs (miRNAs) are a class of 22–25 nucleotide RNAs that control gene expression at the post-transcriptional level. MiRNAs have potential as cancer biomarkers. Melanoma is a highly aggressive form of skin cancer accounting for almost 4% of cancers among men and women, and ~80% of skin cancer-related deaths in the US. In the present study we analyzed plasma-derived exosomal miRNAs from clinically affected and unaffected familial melanoma patients (CDKN2A/p16 gene carriers) and compared them with affected (nonfamilial melanoma) and unaffected control subjects in order to identify novel risk biomarkers for melanoma. Intact miRNAs can be isolated from the circulation because of their presence in exosomes. A number of differentially regulated miRNAs identified by NanoString human V2 miRNA array were validated by quantitative PCR. Significantly, miR-17, miR-19a, miR-21, miR-126, and miR-149 were expressed at higher levels in patients with metastatic sporadic melanoma as compared with familial melanoma patients or unaffected control subjects. Surprisingly, no substantial differences in miRNA expression were detected between familial melanoma patients (all inclusive) and unaffected control subjects. The miRNAs differentially expressed in the different patient cohorts, especially in patients with metastatic melanoma, may play important roles in tumor progression and metastasis, and may be used as predictive biomarkers to monitor remission as well as relapse following therapeutic intervention.

Collaboration


Dive into the Susan R. Pfeffer's collaboration.

Top Co-Authors

Avatar

Lawrence M. Pfeffer

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Chuan He Yang

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Aruna Murti

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Meiyun Fan

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Ziyun Du

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Junming Yue

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Charles R. Handorf

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Michelle Sims

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Davidoff

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge