Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lay Ching Chai is active.

Publication


Featured researches published by Lay Ching Chai.


Gut Pathogens | 2014

Variations in motility and biofilm formation of Salmonella enterica serovar Typhi

Kalaivani Kalai Chelvam; Lay Ching Chai; Kwai Lin Thong

BackgroundSalmonella enterica serovar Typhi (S. Typhi) exhibits unique characteristics as an intracellular human pathogen. It causes both acute and chronic infection with various disease manifestations in the human host only. The principal factors underlying the unique lifestyle of motility and biofilm forming ability of S. Typhi remain largely unknown. The main objective of this study was to explore and investigate the motility and biofilm forming behaviour among S. Typhi strains of diverse background.ResultsSwim and swarm motility tests were performed with 0.25% and 0.5% agar concentration, respectively; while biofilm formation was determined by growing the bacterial cultures for 48 hrs in 96-well microtitre plate. While all S. Typhi strains demonstrated swarming motility with smooth featureless morphology, 58 out of 60 strains demonstrated swimming motility with featureless or bull’s eye morphology. Interestingly, S. Typhi strains of blood-borne origin exhibited significantly higher swimming motility (P < 0.05) than stool-borne strains suggesting that swimming motility may play a role in the systemic invasion of S. Typhi in the human host. Also, stool-borne S. Typhi displayed a negative relationship between motility and biofilm forming behaviour, which was not observed in the blood-borne strains.ConclusionIn summary, both swimming and swarming motility are conserved among S. Typhi strains but there was variation for biofilm forming ability. There was no difference observed in this phenotype for S. Typhi strains from diverse background. These findings serve as caveats for future studies to understand the lifestyle and transmission of this pathogen.


Journal of Food Protection | 2008

Simulation of cross-contamination and decontamination of Campylobacter jejuni during handling of contaminated raw vegetables in a domestic kitchen.

Lay Ching Chai; Hai Yen Lee; Farinazleen Mohd. Ghazali; Fatimah Abu Bakar; Pradeep Kumar Malakar; Mitsuaki Nishibuchi; Yoshitsugu Nakaguchi; Son Radu

Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.


Marine Pollution Bulletin | 2014

Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia

Aziz Ghaderpour; Khairul Nazrin Mohd Nasori; Li Lee Chew; Ving Ching Chong; Kwai Lin Thong; Lay Ching Chai

The deltaic estuarine system of the Matang Mangrove Forest Reserve of Malaysia is a site where several human settlements and brackish water aquaculture have been established. Here, we evaluated the level of fecal indicator bacteria (FIB) and the presence of potentially pathogenic bacteria in the surface water and sediments. Higher levels of FIB were detected at downstream sampling sites from the fishing village, indicating it as a possible source of anthropogenic pollution to the estuary. Enterococci levels in the estuarine sediments were higher than in the surface water, while total coliforms and E. coli in the estuarine sediments were not detected in all samples. Also, various types of potentially pathogenic bacteria, including Klebsiella pneumoniae, Serratia marcescens and Enterobacter cloacae were isolated. The results indicate that the Matang estuarine system is contaminated with various types of potential human bacterial pathogens which might pose a health risk to the public.


Journal of Bacteriology | 2012

Genetic Fine Structure of a Salmonella enterica Serovar Typhi Strain Associated with the 2005 Outbreak of Typhoid Fever in Kelantan, Malaysia

Ramani Baddam; Narender Kumar; Kwai Lin Thong; Soo-Tein Ngoi; Cindy Shuan Ju Teh; Kien-Pong Yap; Lay Ching Chai; Tiruvayipati Suma Avasthi; Niyaz Ahmed

Among enteric pathogens, Salmonella enterica serovar Typhi is responsible for the largest number of food-borne outbreaks and fatalities. The ability of the pathogen to cause systemic infection for extended durations leads to a high cost of disease control. Chronic carriers play important roles in the evolution of Salmonella Typhi; therefore, identification and in-depth characterization of isolates from clinical cases and carriers, especially those from zones of endemicity where the pathogen has not been extensively studied, are necessary. Here, we describe the genome sequence of the highly virulent Salmonella Typhi strain BL196/05 isolated during the outbreak of typhoid in Kelantan, Malaysia, in 2005. The whole-genome sequence and comparative genomics of this strain should enable us to understand the virulence mechanisms and evolutionary dynamics of this pathogen in Malaysia and elsewhere.


Tropical Medicine and Health | 2011

Multiplex PCR for the concurrent detection and differentiation of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium

Chai Fung Pui; Woan Chwen Wong; Lay Ching Chai; Hai Yen Lee; A. Noorlis; T. C. Tuan Zainazor; John Yew Huat Tang; Farinazleen Mohamad Ghazali; Yoke Kqueen Cheah; Yoshitsugu Nakaguchi; Mitsuaki Nishibuchi; Son Radu

Salmonellosis outbreaks involving typhoid fever and human gastroenteritis are important diseases in tropical countries where hygienic conditions are often not maintained. A rapid and sensitive method to detect Salmonella spp., Salmonella Typhi and Salmonella Typhimurium is needed to improve control and surveillance of typhoid fever and Salmonella gastroenteritis. Our objective was the concurrent detection and differentiation of these food-borne pathogens using a multiplex PCR. We therefore designed and optimized a multiplex PCR using three specific PCR primer pairs for the simultaneous detection of these pathogens. The concentration of each of the primer pairs, magnesium chloride concentration, and primer annealing temperature were optimized before verification of the specificity of the primer pairs. The target genes produced amplicons at 429 bp, 300 bp and 620 bp which were shown to be 100% specific to each target bacterium, Salmonella spp., Salmonella Typhi and Salmonella Typhimurium, respectively.


Journal of Bacteriology | 2012

Genome Sequence and Comparative Pathogenomics Analysis of a Salmonella enterica Serovar Typhi Strain Associated with a Typhoid Carrier in Malaysia

Kien-Pong Yap; Han Ming Gan; Cindy Shuan Ju Teh; Ramani Baddam; Lay Ching Chai; Narender Kumar; Suma Tiruvayipati; Niyaz Ahmed; Kwai Lin Thong

Salmonella enterica serovar Typhi is a human pathogen that causes typhoid fever predominantly in developing countries. In this article, we describe the whole genome sequence of the S. Typhi strain CR0044 isolated from a typhoid fever carrier in Kelantan, Malaysia. These data will further enhance the understanding of its host persistence and adaptive mechanism.


PLOS ONE | 2012

Variable carbon catabolism among salmonella enterica serovar typhi isolates

Lay Ching Chai; Boon Hong Kong; Omar Ismail Elemfareji; Kwai Lin Thong

Background Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. Methodology/Principal Findings To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas oftyphoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates) was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. Conclusion The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen.


Frontiers in Microbiology | 2016

Global MLST of Salmonella Typhi Revisited in Post-genomic Era: Genetic Conservation, Population Structure, and Comparative Genomics of Rare Sequence Types

Kien-Pong Yap; Wing Sze Ho; Han Ming Gan; Lay Ching Chai; Kwai L. Thong

Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.


Journal of Bacteriology | 2012

Whole-Genome Sequences and Comparative Genomics of Salmonella enterica Serovar Typhi Isolates from Patients with Fatal and Nonfatal Typhoid Fever in Papua New Guinea

Ramani Baddam; Kwai Lin Thong; Tiruvayipati Suma Avasthi; Sabiha Shaik; Kien-Pong Yap; Cindy Shuan Ju Teh; Lay Ching Chai; Narender Kumar; Niyaz Ahmed

Many of the developing countries of the Southeast Asian region are significantly affected by endemic typhoid fever, possibly as a result of marginal living standards. It is an important public health problem in countries such as Papua New Guinea, which is geographically close to some of the foci of endemicity in Asia. The severity of the disease varies in different regions, and this may be attributable to genetic diversity among the native strains. Genome sequence data on strains from different countries are needed to clearly understand their genetic makeup and virulence potential. We describe the genomes of two Salmonella Typhi isolates from patients with fatal and nonfatal cases of typhoid fever in Papua New Guinea. We discuss in brief the underlying sequencing methodology, assembly, genome statistics, and important features of the two draft genomes, which form an essential step in our functional molecular infection epidemiology program centering on typhoid fever. The comparative genomics of these and other isolates would enable us to identify genetic rearrangements and mechanisms responsible for endemicity and the differential severity of pathogenic salmonellae in Papua New Guinea and elsewhere.


Brazilian Journal of Microbiology | 2013

Formation of biofilm by Listeria monocytogenes ATCC 19112 at different incubation temperatures and concentrations of sodium chloride

Hai Yen Lee; Lay Ching Chai; Chai Fung Pui; Shuhaimi Mustafa; Yoke Kqueen Cheah; Mitsuaki Nishibuchi; Son Radu

Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1–10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress.

Collaboration


Dive into the Lay Ching Chai's collaboration.

Top Co-Authors

Avatar

Son Radu

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hai Yen Lee

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Tunung Robin

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Son

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Chai Fung Pui

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge