Lazaro G. Perez-Montoto
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lazaro G. Perez-Montoto.
Journal of Proteome Research | 2009
Riccardo Concu; María Auxiliadora Dea-Ayuela; Lazaro G. Perez-Montoto; Francisco Bolás-Fernández; Francisco J. Prado-Prado; Gianni Podda; Eugenio Uriarte; Florencio M. Ubeira; Humberto González-Díaz
The number of protein and peptide structures included in Protein Data Bank (PDB) and Gen Bank without functional annotation has increased. Consequently, there is a high demand for theoretical models to predict these functions. Here, we trained and validated, with an external set, a Markov Chain Model (MCM) that classifies proteins by their possible mechanism of action according to Enzyme Classification (EC) number. The methodology proposed is essentially new, and enables prediction of all EC classes with a single equation without the need for an equation for each class or nonlinear models with multiple outputs. In addition, the model may be used to predict whether one peptide presents a positive or negative contribution of the activity of the same EC class. The model predicts the first EC number for 106 out of 151 (70.2%) oxidoreductases, 178/178 (100%) transferases, 223/223 (100%) hydrolases, 64/85 (75.3%) lyases, 74/74 (100%) isomerases, and 100/100 (100%) ligases, as well as 745/811 (91.9%) nonenzymes. It is important to underline that this method may help us predict new enzyme proteins or select peptide candidates that improve enzyme activity, which may be of interest for the prediction of new drugs or drug targets. To illustrate the models application, we report the 2D-Electrophoresis (2DE) isolation from Leishmania infantum as well as MADLI TOF Mass Spectra characterization and theoretical study of the Peptide Mass Fingerprints (PMFs) of a new protein sequence. The theoretical study focused on MASCOT, BLAST alignment, and alignment-free QSAR prediction of the contribution of 29 peptides found in the PMF of the new protein to specific enzyme action. This combined strategy may be used to identify and predict peptides of prokaryote and eukaryote parasites and their hosts as well as other superior organisms, which may be of interest in drug development or target identification.
Biochimica et Biophysica Acta | 2009
R. Concu; María Auxiliadora Dea-Ayuela; Lazaro G. Perez-Montoto; Francisco J. Prado-Prado; Eugenio Uriarte; Francisco Bolás-Fernández; G. Podda; Alejandro Pazos; Cristian R. Munteanu; Florencio M. Ubeira; Humberto González-Díaz
The number of protein 3D structures without function annotation in Protein Data Bank (PDB) has been steadily increased. This fact has led in turn to an increment of demand for theoretical models to give a quick characterization of these proteins. In this work, we present a new and fast Markov chain model (MCM) to predict the enzyme classification (EC) number. We used both linear discriminant analysis (LDA) and/or artificial neural networks (ANN) in order to compare linear vs. non-linear classifiers. The LDA model found is very simple (three variables) and at the same time is able to predict the first EC number with an overall accuracy of 79% for a data set of 4755 proteins (859 enzymes and 3896 non-enzymes) divided into both training and external validation series. In addition, the best non-linear ANN model is notably more complex but has an overall accuracy of 98.85%. It is important to emphasize that this method may help us to predict not only new enzyme proteins but also to select peptide candidates found on the peptide mass fingerprints (PMFs) of new proteins that may improve enzyme activity. In order to illustrate the use of the model in this regard, we first report the 2D electrophoresis (2DE) and MADLI-TOF mass spectra characterization of the PMF of a new possible malate dehydrogenase sequence from Leishmania infantum. Next, we used the models to predict the contribution to a specific enzyme action of 30 peptides found in the PMF of the new protein. We implemented the present model in a server at portal Bio-AIMS (http://miaja.tic.udc.es/Bio-AIMS/EnzClassPred.php). This free on-line tool is based on PHP/HTML/Python and MARCH-INSIDE routines. This combined strategy may be used to identify and predict peptides of prokaryote and eukaryote parasites and their hosts as well as other superior organisms, which may be of interest in drug development or target identification.
Current Drug Metabolism | 2010
Humberto González-Díaz; Aliuska Duardo-Sanchez; Florencio M. Ubeira; Francisco J. Prado-Prado; Lazaro G. Perez-Montoto; Riccardo Concu; Gianni Podda; Bairong Shen
In this communication we carry out an in-depth review of a very versatile QSPR-like method. The method name is MARCH-INSIDE (MARkov CHains Ivariants for Network Selection and DEsign) and is a simple but efficient computational approach to the study of QSPR-like problems in biomedical sciences. The method uses the theory of Markov Chains to generate parameters that numerically describe the structure of a system. This approach generates two principal types of parameters Stochastic Topological Indices (sto-TIs). The use of these parameters allows the rapid collection, annotation, retrieval, comparison and mining structures of molecular, macromolecular, supramolecular, and non-molecular systems within large databases. Here, we review and comment by the first time on the several applications of MARCH-INSIDE to predict drugs ADMET, Activity, Metabolizing Enzymes, and Toxico-Proteomics biomarkers discovery. The MARCH-INSIDE models reviewed are: a) drug-tissue distribution profiles, b) assembling drug-tissue complex networks, c) multi-target models for anti-parasite/anti-microbial activity, c) assembling drug-target networks, d) drug toxicity and side effects, e) web-server for drug metabolizing enzymes, f) models in drugs toxico-proteomics. We close the review with some legal remarks related to the use of this class of QSPR-like models.
Journal of Theoretical Biology | 2009
Humberto González-Díaz; Lazaro G. Perez-Montoto; A. Duardo-Sanchez; Esperanza Paniagua; Severo Vázquez-Prieto; Román Vilas; María Auxiliadora Dea-Ayuela; Francisco Bolás-Fernández; Cristian R. Munteanu; Julian Dorado; J. Costas; Florencio M. Ubeira
Abstract Several graph representations have been introduced for different data in theoretical biology. For instance, complex networks based on Graph theory are used to represent the structure and/or dynamics of different large biological systems such as protein–protein interaction networks. In addition, Randic, Liao, Nandy, Basak, and many others developed some special types of graph-based representations. This special type of graph includes geometrical constrains to node positioning in space and adopts final geometrical shapes that resemble lattice-like patterns. Lattice networks have been used to visually depict DNA and protein sequences but they are very flexible. However, despite the proved efficacy of new lattice-like graph/networks to represent diverse systems, most works focus on only one specific type of biological data. This work proposes a generalized type of lattice and illustrates how to use it in order to represent and compare biological data from different sources. We exemplify the following cases: protein sequence; mass spectra (MS) of protein peptide mass fingerprints (PMF); molecular dynamic trajectory (MDTs) from structural studies; mRNA microarray data; single nucleotide polymorphisms (SNPs); 1D or 2D-Electrophoresis study of protein polymorphisms and protein-research patent and/or copyright information. We used data available from public sources for some examples but for other, we used experimental results reported herein for the first time. This work may break new ground for the application of Graph theory in theoretical biology and other areas of biomedical sciences.
European Journal of Medicinal Chemistry | 2009
Francisco J. Prado-Prado; Fernanda Borges; Lazaro G. Perez-Montoto; Humberto González-Díaz
The most important limitation of antifungal QSAR models is that they predict the biological activity of drugs against only one fungal species. This is determined due the fact that most of the up-to-date reported molecular descriptors encode only information about the molecular structure. Consequently, predicting the probability with which a drug is active against different fungal species with a single unifying model is a goal of major importance. Herein, we use the Markov Chain theory to calculate new multi-target spectral moments to fit a QSAR model that predicts the antifungal activity of more than 280 drugs against 90 fungi species. Linear discriminant analysis (LDA) was used to classify drugs into two classes as active or non-active against the different tested fungal species whose data we processed. The model correctly classifies 12 434 out of 12 566 non-active compounds (98.95%) and 421 out of 468 active compounds (89.96%). Overall training predictability was 98.63%. Validation of the model was carried out by means of external predicting series, the model classifying, thus, 6216 out of 6277 non-active compounds and 215 out of 239 active compounds. Overall training predictability was 98.7%. The present is the first attempt to calculate, within a unifying framework, the probabilities of antifungal action of drugs against many different species based on spectral moments analysis.
Current Pharmaceutical Design | 2010
Humberto González-Díaz; F. Romarís; Aliuska Duardo-Sanchez; Lazaro G. Perez-Montoto; Francisco J. Prado-Prado; Grace Patlewicz; Florencio M. Ubeira
Quantitative Structure-Activity Relationship (QSAR) models have been used in Pharmaceutical design and Medicinal Chemistry for the discovery of anti-parasite drugs. QSAR models predict biological activity using as input different types of structural parameters of molecules. Topological Indices (TIs) are a very interesting class of these parameters. We can derive TIs from graph representations based on only nodes (atoms) and edges (chemical bonds). TIs are not time-consuming in terms of computational resources because they depend only on atom-atom connectivity information. This information expressed in the molecular graphs can be tabulated in the form of adjacency matrices easy to manipulate with computers. Consequently, TIs allow the rapid collection, annotation, retrieval, comparison and mining of molecular structures within large databases. The interest in TIs has exploded because we can use them to describe also macromolecular and macroscopic systems represented by complex networks of interactions (links) between the different parts of a system (nodes) such as: drug-target, protein-protein, metabolic, host-parasite, brain cortex, parasite disease spreading, Internet, or social networks. In this work, we review and comment on the following topics related to the use of TIs in anti-parasite drugs and target discovery. The first topic reviewed was: Topological Indices and QSAR for antiparasitic drugs. This topic included: Theoretical Background, QSAR for anti-malaria drugs, QSAR for anti-Toxoplasma drugs. The second topic was: TOMO-COMD approach to QSAR of antiparasitic drugs. We included in this topic: TOMO-COMD theoretical background and TOMO-COMD models for antihelmintic activity, Trichomonas, anti-malarials, anti-trypanosome compounds. The third section was inserted to discuss Topological Indices in the context of Complex Networks. The last section is devoted to the MARCH-INSIDE approach to QSAR of antiparasitic drugs and targets. This begins with a theoretical background for drugs and parameters for proteins. Next, we reviewed MARCH-INSIDE models for Pharmaceutical Design of antiparasitic drugs including: flukicidal drugs and anti-coccidial drugs. We close MARCH-NSIDE topic with a review of multi-target QSAR of antiparasitic drugs, MARCH-INSIDE assembly of complex networks of antiparasitic drugs. We closed the MARCH-INSIDE section discussing the prediction of proteins in parasites and MARCH-INSIDE web-servers for Protein-Protein interactions in parasites: Plasmod-PPI and Trypano-PPI web-servers. We closed this revision with an important section devoted to review some legal issues related to QSAR models.
Analytica Chimica Acta | 2009
Francisco J. Prado-Prado; Fernanda Borges; Eugenio Uriarte; Lazaro G. Perez-Montoto; Humberto González-Díaz
The antiviral QSAR models have an important limitation today. They predict the biological activity of drugs against only one viral species. This is determined by the fact that most of the current reported molecular descriptors encode only information about the molecular structure. As a result, predicting the probability with which a drug is active against different viral species with a single unifying model is a goal of major importance. In this work, we use Markov Chain theory to calculate new multi-target spectral moments to fit a QSAR model for drugs active against 40 viral species. The model is based on 500 drugs (including active and non-active compounds) tested as antiviral agents in the recent literature; not all drugs were predicted against all viruses, but only those with experimental values. The database also contains 207 well-known compounds (not as recent as the previous ones) reported in the Merck Index with other activities that do not include antiviral action against any virus species. We used Linear Discriminant Analysis (LDA) to classify all these drugs into two classes as active or non-active against the different viral species tested, whose data we processed. The model correctly classifies 5129 out of 5594 non-active compounds (91.69%) and 412 out of 422 active compounds (97.63%). Overall training predictability was 92.34%. The validation of the model was carried out by means of external predicting series, the model classifying, thus, 2568 out of 2779 non-active compounds and 224 out of 229 active compounds. Overall training predictability was 92.82%. The present work reports the first attempts to calculate within a unified framework the probabilities of antiviral drugs against different virus species based on a spectral moment analysis.
Molecular Diversity | 2010
Humberto González-Díaz; María Auxiliadora Dea-Ayuela; Lazaro G. Perez-Montoto; Francisco J. Prado-Prado; Guillermin Agüero-Chapin; Francisco Bolás-Fernández; Roberto I. Vazquez-Padron; Florencio M. Ubeira
The toxicity and low success of current treatments for Leishmaniosis determines the search of new peptide drugs and/or molecular targets in Leishmania pathogen species (L. infantum and L. major). For example, Ribonucleases (RNases) are enzymes relevant to several biologic processes; then, theoretical and experimental study of the molecular diversity of Peptide Mass Fingerprints (PMFs) of RNases is useful for drug design. This study introduces a methodology that combines QSAR models, 2D-Electrophoresis (2D-E), MALDI-TOF Mass Spectroscopy (MS), BLAST alignment, and Molecular Dynamics (MD) to explore PMFs of RNases. We illustrate this approach by investigating for the first time the PMFs of a new protein of L. infantum. Here we report and compare new versus old predictive models for RNases based on Topological Indices (TIs) of Markov Pseudo-Folding Lattices. These group of indices called Pseudo-folding Lattice 2D-TIs include: Spectral moments πk(x,y), Mean Electrostatic potentials ξk(x,y), and Entropy measures θk(x,y). The accuracy of the models (training/cross-validation) was as follows: ξk(x,y)-model (96.0%/91.7%)>πk(x,y)-model (84.7/83.3) > θk(x,y)-model (66.0/66.7). We also carried out a 2D-E analysis of biological samples of L. infantum promastigotes focusing on a 2D-E gel spot of one unknown protein with M<20, 100 and pI <7. MASCOT search identified 20 proteins with Mowse score >30, but not one >52 (threshold value), the higher value of 42 was for a probable DNA-directed RNA polymerase. However, we determined experimentally the sequence of more than 140 peptides. We used QSAR models to predict RNase scores for these peptides and BLAST alignment to confirm some results. We also calculated 3D-folding TIs based on MD experiments and compared 2D versus 3D-TIs on molecular phylogenetic analysis of the molecular diversity of these peptides. This combined strategy may be of interest in drug development or target identification.
Molecular BioSystems | 2012
Vanessa Aguiar-Pulido; Cristian R. Munteanu; Jose A. Seoane; Enrique Fernández-Blanco; Lazaro G. Perez-Montoto; Humberto González-Díaz; Julian Dorado
Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecules by transforming real properties into molecular graph topological indices. This study proposes a new classification model for proteins linked with human colon cancer by using spiral graph topological indices of protein amino acid sequences. The best quantitative structure-disease relationship model is based on eleven Shannon entropy indices. It was obtained with the Naïve Bayes method and shows excellent predictive ability (90.92%) for new proteins linked with this type of cancer. The statistical analysis confirms that this model allows diagnosing the absence of human colon cancer obtaining an area under receiver operating characteristic of 0.91. The methodology presented can be used for any type of sequential information such as any protein and nucleic acid sequence.
European Journal of Medicinal Chemistry | 2009
Lazaro G. Perez-Montoto; Lourdes Santana; Humberto González-Díaz
Abstract We introduce here a new class of invariants for MD trajectories based on the spectral moments πk (L) of the Markov matrix associated to lattice network-like (LN) graph representations of Molecular Dynamics (MD) trajectories. The procedure embeds the MD energy profiles on a 2D Cartesian coordinates system using simple heuristic rules. At the same time, we associate the LN with a Markov matrix that describes the probabilities of passing from one state to other in the new 2D space. We construct this type of LNs for 422 MD trajectories obtained in DNA–drug docking experiments of 57 furocoumarins. The combined use of psoralens+ultraviolet light (UVA) radiation is known as PUVA therapy. PUVA is effective in the treatment of skin diseases such as psoriasis and mycosis fungoides. PUVA is also useful to treat human platelet (PTL) concentrates in order to eliminate Leishmania spp. and Trypanosoma cruzi. Both are parasites that cause Leishmaniosis (a dangerous skin and visceral disease) and Chagas disease, respectively; and may circulate in blood products collected from infected donors. We included in this study both lineal (psoralens) and angular (angelicins) furocoumarins. In the study, we grouped the LNs on two sets; set1: DNA–drug complex MD trajectories for active compounds and set2: MD trajectories of non-active compounds or no-optimal MD trajectories of active compounds. We calculated the respective πk (L) values for all these LNs and used them as inputs to train a new classifier that discriminate set1 from set2 cases. In training series the model correctly classifies 79 out of 80 (specificity=98.75%) set1 and 226 out of 238 (Sensitivity=94.96%) set2 trajectories. In independent validation series the model correctly classifies 26 out of 26 (specificity=100%) set1 and 75 out of 78 (sensitivity=96.15%) set2 trajectories. We propose this new model as a scoring function to guide DNA-docking studies in the drug design of new coumarins for anticancer or antiparasitic PUVA therapy.