Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Le Jiang is active.

Publication


Featured researches published by Le Jiang.


Cell | 2012

Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence.

Tongyuan Li; Ning Kon; Le Jiang; Minjia Tan; Thomas Ludwig; Yingming Zhao; Richard Baer; Wei Gu

Cell-cycle arrest, apoptosis, and senescence are widely accepted as the major mechanisms by which p53 inhibits tumor formation. Nevertheless, it remains unclear whether they are the rate-limiting steps in tumor suppression. Here, we have generated mice bearing lysine to arginine mutations at one (p53(K117R)) or three (p53(3KR); K117R+K161R+K162R) of p53 acetylation sites. Although p53(K117R/K117R) cells are competent for p53-mediated cell-cycle arrest and senescence, but not apoptosis, all three of these processes are ablated in p53(3KR/3KR) cells. Surprisingly, unlike p53 null mice, which rapidly succumb to spontaneous thymic lymphomas, early-onset tumor formation does not occur in either p53(K117R/K117R) or p53(3KR/3KR) animals. Notably, p53(3KR) retains the ability to regulate energy metabolism and reactive oxygen species production. These findings underscore the crucial role of acetylation in differentially modulating p53 responses and suggest that unconventional activities of p53, such as metabolic regulation and antioxidant function, are critical for suppression of early-onset spontaneous tumorigenesis.


Nature | 2015

Ferroptosis as a p53-mediated activity during tumour suppression

Le Jiang; Ning Kon; Tongyuan Li; Shang–Jui Wang; Tao Su; Hanina Hibshoosh; Richard Baer; Wei Gu

Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p533KR-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.


Cancer Research | 2008

Global Hypomethylation of Genomic DNA in Cancer-Associated Myofibroblasts

Le Jiang; Tamas A. Gonda; Mary V. Gamble; Martha Salas; Venkatraman E. Seshan; Shuiping Tu; William Twaddell; Péter Hegyi; György Lázár; Islay Steele; Andrea Varro; Timothy C. Wang; Benjamin Tycko

Global hypomethylation has long been recognized as a feature of the malignant epithelial component in human carcinomas. Here we show evidence for this same type of epigenetic alteration in cancer-associated stromal myofibroblasts. We used methylation-sensitive SNP array analysis (MSNP) to profile DNA methylation in early-passage cultures of stromal myofibroblasts isolated from human gastric cancers. The MSNP data indicated widespread hypomethylation in these cells, with rare focal gains of methylation, conclusions that were independently validated by bisulfite sequencing and by a methylation-sensitive cytosine incorporation assay. Immunohistochemistry with anti-5-methylcytosine (anti-5-methyl-C) in a series of gastrectomy specimens showed frequent loss of methylation in nuclei of both the malignant epithelial cells and alpha-smooth muscle actin (ASMA)-positive stromal myofibroblasts of both intestinal-type and diffuse carcinomas. We confirmed this phenomenon and established its onset at the stage of noninvasive dysplastic lesions by immunohistochemistry for anti-5-methyl-C in a transgenic mouse model of multistage gastric carcinogenesis. These findings indicate similar general classes of epigenetic alterations in carcinoma cells and their accompanying reactive stromal cells and add to accumulating evidence for biological differences between normal and cancer-associated myofibroblasts.


Cell Reports | 2016

Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression

Shang–Jui Wang; Dawei Li; Yang Ou; Le Jiang; Yue Chen; Yingming Zhao; Wei Gu

Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53). Whereas the loss of K98 acetylation (p53K98R) alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p534KR: K98R+ 3KR[K117R+K161R+K162R]) completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p533KR, p534KR is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p534KR is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.


Oncotarget | 2016

Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging

Tongyuan Li; Xiangyu Liu; Le Jiang; James Manfredi; Shan Zha; Wei Gu

Although p53-mediated cell cycle arrest, senescence and apoptosis are well accepted as major tumor suppression mechanisms, the loss of these functions does not directly lead to tumorigenesis, suggesting that the precise roles of these canonical activities of p53 need to be redefined. Here, we report that the cells derived from the mutant mice expressing p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, exhibit high levels of aneuploidy upon DNA damage. Moreover, the embryonic lethality caused by the deficiency of XRCC4, a key DNA double strand break repair factor, can be fully rescued in the p533KR/3KR background. Notably, despite high levels of genomic instability, p533KR/3KRXRCC4−/− mice, unlike p53−/− XRCC4−/− mice, are not succumbed to pro-B-cell lymphomas. Nevertheless, p533KR/3KR XRCC4−/− mice display aging-like phenotypes including testicular atrophy, kyphosis, and premature death. Further analyses demonstrate that SLC7A11 is downregulated and that p53-mediated ferroptosis is significantly induced in spleens and testis of p533KR/3KRXRCC4−/− mice. These results demonstrate that the direct role of p53-mediated cell cycle arrest, senescence and apoptosis is to control genomic stability in vivo. Our study not only validates the importance of ferroptosis in p53-mediated tumor suppression in vivo but also reveals that the combination of genomic instability and activation of ferroptosis may promote aging-associated phenotypes.


Journal of Biological Chemistry | 2015

p53 Protein-mediated Regulation of Phosphoglycerate Dehydrogenase (PHGDH) Is Crucial for the Apoptotic Response upon Serine Starvation

Yang Ou; Shang-Jui Wang; Le Jiang; Bin Zheng; Wei Gu

Background: PHGDH encodes a key metabolic enzyme in the serine biosynthesis pathway and is frequently amplified in melanomas. Results: p53 transcriptionally represses PHGDH expression. Serine starvation promotes p53-mediated apoptosis in melanomas through PHGDH suppression. Conclusion: p53-mediated repression of PHGDH enhances the apoptotic response upon serine starvation in melanoma cells. Significance: The combination of the drugs activating p53 and serine deprivation could be a better treatment for melanomas. Although p53 is frequently mutated in human cancers, about 80% of human melanomas retain wild-type p53. Here we report that PHGDH, the key metabolic enzyme that catalyzes the rate-limiting step of the serine biosynthesis pathway, is a target of p53 in human melanoma cells. p53 suppresses PHGDH expression and inhibits de novo serine biosynthesis. Notably, upon serine starvation, p53-mediated cell death is enhanced dramatically in response to Nutlin-3 treatment. Moreover, PHGDH has been found recently to be amplified frequently in human melanomas. We found that PHGDH overexpression significantly suppresses the apoptotic response, whereas RNAi-mediated knockdown of endogenous PHGDH promotes apoptosis under the same treatment. These results demonstrate an important role of p53 in regulating the serine biosynthesis pathway through suppressing PHGDH expression and reveal serine deprivation as a novel approach to sensitize p53-mediated apoptotic responses in human melanoma cells.


Nature | 2016

Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode

Donglai Wang; Ning Kon; Gorka Lasso; Le Jiang; Wenchuan Leng; Wei-Guo Zhu; Jun Qin; Barry Honig; Wei Gu

Summary Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins1-3, the mechanisms of acetylation mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 was the first example for non-histone protein acetylation4. Yet the precise role of the CTD acetylation remains elusive. Lysine acetylation often creates binding sites for bromodomain-containing “reader” proteins5,6; surprisingly, in a proteomic screen, we identified SET as a major cellular factor whose binding with p53 is totally dependent on the CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells but SET-mediated repression is completely abolished by stress-induced p53 CTD acetylation. Moreover, loss of the interaction with SET activates p53, resulting in tumor regression in mouse xenograft models. Notably, the acidic domain of SET acts as a “reader” for unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, p53 acetylation also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP, DAXX and PELP1 (refs. 7-9), and computational analysis of the proteome identified numerous proteins with the potential to serve as the acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knockin mouse model expressing an acetylation-mimicking form of p53. These results reveal that the acidic domain-containing factors act as a new class of acetylation-dependent regulators by targeting p53 and potentially, beyond.Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins, the mechanisms of acetylation-mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 (also known as TP53) was an early example of non-histone protein acetylation and its precise role remains unclear. Lysine acetylation often creates binding sites for bromodomain-containing ‘reader’ proteins. Here we use a proteomic screen to identify the oncoprotein SET as a major cellular factor whose binding with p53 is dependent on CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells, but SET-mediated repression is abolished by stress-induced acetylation of p53 CTD. Moreover, loss of the interaction with SET activates p53, resulting in tumour regression in mouse xenograft models. Notably, the acidic domain of SET acts as a ‘reader’ for the unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, acetylation of p53 also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP (also known as DCAF1), DAXX and PELP1 (refs. 7, 8, 9), and computational analysis of the proteome has identified numerous proteins with the potential to serve as acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knock-in mouse model expressing an acetylation-mimicking form of p53. These results reveal that acidic-domain-containing factors act as a class of acetylation-dependent regulators by targeting p53 and, potentially, other proteins.


Cell Cycle | 2013

p53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene.

Shang-Jui Wang; Guowu Yu; Le Jiang; Tongyuan Li; Qing Lin; Yi Tang; Wei Gu

It is well established that the p53 tumor suppressor plays a crucial role in controlling cell proliferation and apoptosis upon various types of stress. There is increasing evidence showing that p53 is also critically involved in various metabolic pathways, both in tumor and normal cells. Here, we have identified a novel p53 metabolic target pantothenate kinase-1 (PANK1) via ChIP-on-chip. PanK1 catalyzes the rate-limiting step for CoA synthesis and, therefore, controls intracellular CoA content; Pank1-knockout mice exhibit defect in β-oxidation and gluconeogenesis in the liver after starvation due to insufficient CoA levels. We demonstrated that PANK1 gene is a direct transcriptional target of p53. Although DNA damage-induced p53 upregulates PanK1 expression, depletion of PanK1 expression does not affect p53-dependent growth arrest or apoptosis. Interestingly, upon glucose starvation, PanK1 expression is significantly reduced in HCT116 p53 (−/−) but not in HCT116 p53 (+/+) cells, suggesting that p53 is required to maintain PanK1 expression under metabolic stress conditions. Moreover, by using p53-mutant mice, we observed that, similar to the case in Pank1-knockout mice, gluconeogenesis is partially impaired in p53-null mice. Together, our findings show that p53 plays an important role in regulating energy homeostasis through transcriptional control of PANK1, independent of its canonical functions in apoptosis and cell cycle arrest.


Cell Cycle | 2015

Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses.

Le Jiang; Justin H Hickman; Shang-Jui Wang; Wei Gu

The p53 tumor suppressor is a multifaceted polypeptide that impedes tumorigenesis by regulating a diverse array of cellular processes. Triggered by a wide variety of stress stimuli, p53 transcriptionally regulates genes involved in the canonical tumor suppression pathways of apoptosis, cell-cycle arrest, and senescence. We recently discovered a novel mechanism whereby p53 inhibits cystine uptake through repression of the SLC7A11 gene to mediate ferroptosis. Importantly, this p53-SLC7A11 axis is preserved in the p533KR mutant, and contributes to its ability to suppress tumorigenesis in the absence of the classical tumor suppression mechanisms. Here, we report that wild type p53 can induce both apoptosis and ferroptosis upon reactive oxygen species (ROS)-induced stress. Furthermore, we demonstrate that p53s functional N-terminal domain is required for its capacity to regulate oxidative stress responses and ferroptosis. Notably, activated p53 dynamically modulates intracellular ROS, causing an initial reduction and a subsequent increase of ROS levels. Taken together, these data implicate ferroptosis as an additional component of the cell death program induced by wild type p53 in human cancer cells, and reveal a complex and dynamic role of p53 in oxidative stress responses.


Cell Reports | 2015

Hepatic SirT1-Dependent Gain of Function of Stearoyl-CoA Desaturase-1 Conveys Dysmetabolic and Tumor Progression Functions

Li Qiang; Ning Kon; Wenhui Zhao; Le Jiang; Colette M. Knight; Carrie L. Welch; Utpal Pajvani; Wei Gu; Domenico Accili

Obesity is associated with higher incidence of cancer, but the predisposing mechanisms remain poorly understood. The NAD(+)-dependent deacetylase SirT1 orchestrates metabolism, cellular survival, and growth. However, there is no unifying mechanism to explain the metabolic and tumor-related effects of SirT1. In this work, we demonstrate that genetic ablation of the endogenous inhibitor of SirT1, Deleted-in-Breast-Cancer-1 (Dbc1), unexpectedly results in obesity and insulin resistance. Dbc1 deficiency promoted SirT1-dependent gain of function of stearoyl-coenzyme A desaturase 1 (Scd1), increasing plasma and tissue levels of unsaturated fatty acids. The metabolic abnormalities in Dbc1(-/-) mice were reversed by ablation of hepatic SirT1 or by inhibition of Scd1 activity. Furthermore, loss of Dbc1 impaired activation of the master tumor suppressor p53 and treatment with an Scd1 inhibitor extended survival of tumor-prone TP53(-/-) mice by decreasing tumor-related death. Together, our findings illustrate a shared mechanism of obesity and tumor progression mediated by hepatic SirT1 and resulting in the activation of a key lipid synthetic enzyme, with potential therapeutic implications.

Collaboration


Dive into the Le Jiang's collaboration.

Top Co-Authors

Avatar

Wei Gu

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge