Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ning Kon is active.

Publication


Featured researches published by Ning Kon.


Molecular Cell | 2004

A Dynamic Role of HAUSP in the p53-Mdm2 Pathway

Muyang Li; Christopher L. Brooks; Ning Kon; Wei Gu

Our previous study showed that ubiquitination of p53 is reversible and that the ubiquitin hydrolase HAUSP can stabilize p53 by deubiquitination. Here, we found that partial reduction of endogenous HAUSP levels by RNAi indeed destabilizes endogenous p53; surprisingly, however, nearly complete ablation of HAUSP stabilizes and activates p53. We further show that this phenomenon occurs because HAUSP stabilizes Mdm2 in a p53-independent manner, providing an interesting feedback loop in p53 regulation. Notably, HAUSP is required for Mdm2 stability in normal cells; in HAUSP-ablated cells, self-ubiquitinated-Mdm2 becomes extremely unstable, leading to indirect p53 activation. Furthermore, this feedback regulation is specific to Mdm2; in HeLa cells, where p53 is preferentially degraded by viral E6-dependent ubiquitination, depletion of HAUSP fails to activate p53. This study provides an example of an ubiquitin ligase (Mdm2) that is directly regulated by a deubiquitinase (HAUSP) and also reveals a dynamic role of HAUSP in the p53-Mdm2 pathway.


Cell | 2005

ARF-BP1/mule is a critical mediator of the ARF tumor suppressor

Delin Chen; Ning Kon; Muyang Li; Wenzhu Zhang; Jun Qin; Wei Gu

Although the importance of the ARF tumor suppressor in p53 regulation is well established, numerous studies indicate that ARF also suppresses cell growth in a p53/Mdm2-independent manner. To understand the mechanism of ARF-mediated tumor suppression, we identified a ubiquitin ligase, ARF-BP1, as a key factor associated with ARF in vivo. ARF-BP1 harbors a signature HECT motif, and its ubiquitin ligase activity is inhibited by ARF. Notably, inactivation of ARF-BP1, but not Mdm2, suppresses the growth of p53 null cells in a manner reminiscent of ARF induction. Surprisingly, in p53 wild-type cells, ARF-BP1 directly binds and ubiquitinates p53, and inactivation of endogenous ARF-BP1 is crucial for ARF-mediated p53 stabilization. Thus, our study modifies the current view of ARF-mediated p53 activation and reveals that ARF-BP1 is a critical mediator of both the p53-independent and p53-dependent tumor suppressor functions of ARF. As such, ARF-BP1 may serve as a potential target for therapeutic intervention in tumors regardless of p53 status.


Cell | 2012

Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence.

Tongyuan Li; Ning Kon; Le Jiang; Minjia Tan; Thomas Ludwig; Yingming Zhao; Richard Baer; Wei Gu

Cell-cycle arrest, apoptosis, and senescence are widely accepted as the major mechanisms by which p53 inhibits tumor formation. Nevertheless, it remains unclear whether they are the rate-limiting steps in tumor suppression. Here, we have generated mice bearing lysine to arginine mutations at one (p53(K117R)) or three (p53(3KR); K117R+K161R+K162R) of p53 acetylation sites. Although p53(K117R/K117R) cells are competent for p53-mediated cell-cycle arrest and senescence, but not apoptosis, all three of these processes are ablated in p53(3KR/3KR) cells. Surprisingly, unlike p53 null mice, which rapidly succumb to spontaneous thymic lymphomas, early-onset tumor formation does not occur in either p53(K117R/K117R) or p53(3KR/3KR) animals. Notably, p53(3KR) retains the ability to regulate energy metabolism and reactive oxygen species production. These findings underscore the crucial role of acetylation in differentially modulating p53 responses and suggest that unconventional activities of p53, such as metabolic regulation and antioxidant function, are critical for suppression of early-onset spontaneous tumorigenesis.


Nature | 2015

Ferroptosis as a p53-mediated activity during tumour suppression

Le Jiang; Ning Kon; Tongyuan Li; Shang–Jui Wang; Tao Su; Hanina Hibshoosh; Richard Baer; Wei Gu

Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p533KR-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.


Journal of Biological Chemistry | 2012

Inactivation of arf-bp1 Induces p53 Activation and Diabetic Phenotypes in Mice

Ning Kon; Jiayun Zhong; Li Qiang; Domenico Accili; Wei Gu

Background: ARF-BP1 is involved in Mdm2-independent p53 degradation. Results: Inactivation of arf-bp1 in mice resulted in p53 activation and embryonic lethality. Inactivation of arf-bp1 in pancreatic β-cells resulted in diabetes, which was partially rescued by loss of p53. Conclusion: p53 is critically regulated by ARF-BP1 in vivo and in β-cells. Significance: ARF-BP1 is important for maintaining pancreatic β-cell homeostasis in aging mice. It is well accepted that the Mdm2 ubiquitin ligase acts as a major factor in controlling p53 stability and activity in vivo. Although several E3 ligases have been reported to be involved in Mdm2-independent p53 degradation, the roles of these ligases in p53 regulation in vivo remain largely unknown. To elucidate the physiological role of the ubiquitin ligase ARF-BP1, we generated arf-bp1 mutant mice. We found that inactivation of arf-bp1 during embryonic development in mice resulted in p53 activation and embryonic lethality, but the mice with arf-bp1 deletion specifically in the pancreatic β-cells (arf-bp1FL/Y/RIP-cre) were viable and displayed no obvious abnormality after birth. Interestingly, these mice showed dramatic loss of β-cells as mice aged, and >50% of these mice died of severe diabetic symptoms before reaching 1 year of age. Notably, the diabetic phenotype of these mice was largely reversed by concomitant deletion of p53, and the life span of the mice was significantly extended (p53LFL/FL/arf-bp1FL/Y/RIP-cre). These findings underscore an important role of ARF-BP1 in maintaining β-cell homeostasis in aging mice and reveal that the stability of p53 is critically regulated by ARF-BP1 in vivo.


Molecular Cell | 2013

Differential Effects on ARF Stability by Normal versus Oncogenic Levels of c-Myc Expression

Delin Chen; Ning Kon; Jiayun Zhong; Pingzhao Zhang; Long Yu; Wei Gu

ARF suppresses aberrant cell growth upon c-Myc overexpression by activating p53 responses. Nevertheless, the precise mechanism by which ARF specifically restrains the oncogenic potential of c-Myc without affecting its normal physiological function is not well understood. Here, we show that low levels of c-Myc expression stimulate cell proliferation, whereas high levels inhibit by activating the ARF/p53 response. Although the mRNA levels of ARF are induced in both scenarios, the accumulation of ARF protein occurs only when ULF-mediated degradation of ARF is inhibited by c-Myc overexpression. Moreover, the levels of ARF are reduced through ULF-mediated ubiquitination upon DNA damage. Blocking ARF degradation by c-Myc overexpression dramatically stimulates the apoptotic responses. Our study reveals that ARF stability control is crucial for differentiating normal (low) versus oncogenic (high) levels of c-Myc expression and suggests that differential effects on ULF- mediated ARF ubiquitination by c-Myc levels act as a barrier in oncogene-induced stress responses.


Nature Medicine | 2016

HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma

Omid Tavana; Dawei Li; Chao Dai; Gonzalo Lopez; Debarshi Banerjee; Ning Kon; Chao Chen; Darrell J. Yamashiro; Hongbin Sun; Wei Gu

The MYCN proto-oncogene is amplified in a number of advanced-stage human tumors, such as neuroblastomas. Similar to other members of the MYC family of oncoproteins, MYCN (also known as N-Myc) is a transcription factor, and its stability and activity are tightly controlled by ubiquitination-dependent proteasome degradation. Although numerous studies have demonstrated that N-Myc is a driver of neuroblastoma tumorigenesis, therapies that directly suppress N-Myc activity in human tumors are limited. Here we have identified ubiquitin-specific protease 7 (USP7; also known as HAUSP) as a regulator of N-Myc function in neuroblastoma. HAUSP interacts with N-Myc, and HAUSP expression induces deubiquitination and subsequent stabilization of N-Myc. Conversely, RNA interference (RNAi)-mediated knockdown of USP7 in neuroblastoma cancer cell lines, or genetic ablation of Usp7 in the mouse brain, destabilizes N-Myc, which leads to inhibition of N-Myc function. Notably, HAUSP is more abundant in patients with neuroblastoma who have poorer prognosis, and HAUSP expression substantially correlates with N-Myc transcriptional activity. Furthermore, small-molecule inhibitors of HAUSPs deubiquitinase activity markedly suppress the growth of MYCN-amplified human neuroblastoma cell lines in xenograft mouse models. Taken together, our findings demonstrate a crucial role of HAUSP in regulating N-Myc function in vivo and suggest that HAUSP inhibition is a potential therapy for MYCN-amplified tumors.


Nature | 2016

Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode

Donglai Wang; Ning Kon; Gorka Lasso; Le Jiang; Wenchuan Leng; Wei-Guo Zhu; Jun Qin; Barry Honig; Wei Gu

Summary Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins1-3, the mechanisms of acetylation mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 was the first example for non-histone protein acetylation4. Yet the precise role of the CTD acetylation remains elusive. Lysine acetylation often creates binding sites for bromodomain-containing “reader” proteins5,6; surprisingly, in a proteomic screen, we identified SET as a major cellular factor whose binding with p53 is totally dependent on the CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells but SET-mediated repression is completely abolished by stress-induced p53 CTD acetylation. Moreover, loss of the interaction with SET activates p53, resulting in tumor regression in mouse xenograft models. Notably, the acidic domain of SET acts as a “reader” for unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, p53 acetylation also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP, DAXX and PELP1 (refs. 7-9), and computational analysis of the proteome identified numerous proteins with the potential to serve as the acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knockin mouse model expressing an acetylation-mimicking form of p53. These results reveal that the acidic domain-containing factors act as a new class of acetylation-dependent regulators by targeting p53 and potentially, beyond.Although lysine acetylation is now recognized as a general protein modification for both histones and non-histone proteins, the mechanisms of acetylation-mediated actions are not completely understood. Acetylation of the C-terminal domain (CTD) of p53 (also known as TP53) was an early example of non-histone protein acetylation and its precise role remains unclear. Lysine acetylation often creates binding sites for bromodomain-containing ‘reader’ proteins. Here we use a proteomic screen to identify the oncoprotein SET as a major cellular factor whose binding with p53 is dependent on CTD acetylation status. SET profoundly inhibits p53 transcriptional activity in unstressed cells, but SET-mediated repression is abolished by stress-induced acetylation of p53 CTD. Moreover, loss of the interaction with SET activates p53, resulting in tumour regression in mouse xenograft models. Notably, the acidic domain of SET acts as a ‘reader’ for the unacetylated CTD of p53 and this mechanism of acetylation-dependent regulation is widespread in nature. For example, acetylation of p53 also modulates its interactions with similar acidic domains found in other p53 regulators including VPRBP (also known as DCAF1), DAXX and PELP1 (refs. 7, 8, 9), and computational analysis of the proteome has identified numerous proteins with the potential to serve as acidic domain readers and lysine-rich ligands. Unlike bromodomain readers, which preferentially bind the acetylated forms of their cognate ligands, the acidic domain readers specifically recognize the unacetylated forms of their ligands. Finally, the acetylation-dependent regulation of p53 was further validated in vivo by using a knock-in mouse model expressing an acetylation-mimicking form of p53. These results reveal that acidic-domain-containing factors act as a class of acetylation-dependent regulators by targeting p53 and, potentially, other proteins.


Cell Reports | 2015

Hepatic SirT1-Dependent Gain of Function of Stearoyl-CoA Desaturase-1 Conveys Dysmetabolic and Tumor Progression Functions

Li Qiang; Ning Kon; Wenhui Zhao; Le Jiang; Colette M. Knight; Carrie L. Welch; Utpal Pajvani; Wei Gu; Domenico Accili

Obesity is associated with higher incidence of cancer, but the predisposing mechanisms remain poorly understood. The NAD(+)-dependent deacetylase SirT1 orchestrates metabolism, cellular survival, and growth. However, there is no unifying mechanism to explain the metabolic and tumor-related effects of SirT1. In this work, we demonstrate that genetic ablation of the endogenous inhibitor of SirT1, Deleted-in-Breast-Cancer-1 (Dbc1), unexpectedly results in obesity and insulin resistance. Dbc1 deficiency promoted SirT1-dependent gain of function of stearoyl-coenzyme A desaturase 1 (Scd1), increasing plasma and tissue levels of unsaturated fatty acids. The metabolic abnormalities in Dbc1(-/-) mice were reversed by ablation of hepatic SirT1 or by inhibition of Scd1 activity. Furthermore, loss of Dbc1 impaired activation of the master tumor suppressor p53 and treatment with an Scd1 inhibitor extended survival of tumor-prone TP53(-/-) mice by decreasing tumor-related death. Together, our findings illustrate a shared mechanism of obesity and tumor progression mediated by hepatic SirT1 and resulting in the activation of a key lipid synthetic enzyme, with potential therapeutic implications.


Oncotarget | 2018

Inhibition of Mdmx (Mdm4) in vivo induces anti-obesity effects

Ning Kon; Donglai Wang; Tongyuan Li; Le Jiang; Li Qiang; Wei Gu

Although cell-cycle arrest, senescence and apoptosis remain as major canonical activities of p53 in tumor suppression, the emerging role of p53 in metabolism has been a topic of great interest. Nevertheless, it is not completely understood how p53-mediated metabolic activities are regulated in vivo and whether this part of the activities has an independent role beyond tumor suppression. Mdmx (also called Mdm4), like Mdm2, acts as a major suppressor of p53 but the embryonic lethality of mdmx-null mice creates difficulties to evaluate its physiological significance in metabolism. Here, we report that the embryonic lethality caused by the deficiency of mdmx, in contrast to the case for mdm2, is fully rescued in the background of p533KR/3KR, an acetylation-defective mutant unable to induce cell-cycle arrest, senescence and apoptosis. p533KR/3KR/mdmx-/- mice are healthy but skinny without obvious developmental defects. p533KR/3KR/mdmx-/- mice are resistant to fat accumulation in adipose tissues upon high fat diet. Notably, the levels of p53 protein are only slightly increased and can be further induced upon DNA damage in p533KR/3KR/mdmx-/- mice, suggesting that Mdmx is only partially required for p53 degradation in vivo. Further analyses indicate that the anti-obesity phenotypes in p533KR/3KR/mdmx-/- mice are caused by activation of lipid oxidation and thermogenic programs in adipose tissues. These results demonstrate the specific effects of the p53/Mdmx axis in lipid metabolism and adipose tissue remodeling and reveal a surprising role of Mdmx inhibition in anti-obesity effects beyond, commonly expected, tumor suppression. Thus, our study has significant implications regarding Mdmx inhibitors in the treatment of obesity related diseases.

Collaboration


Dive into the Ning Kon's collaboration.

Top Co-Authors

Avatar

Wei Gu

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Qin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge