Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leander D. L. Anderegg is active.

Publication


Featured researches published by Leander D. L. Anderegg.


Proceedings of the National Academy of Sciences of the United States of America | 2012

The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off

William R. L. Anderegg; Joseph A. Berry; Duncan D. Smith; John S. Sperry; Leander D. L. Anderegg; Christopher B. Field

Forest ecosystems store approximately 45% of the carbon found in terrestrial ecosystems, but they are sensitive to climate-induced dieback. Forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems, climate–ecosystem interactions, and carbon-cycle feedbacks. Current understanding of the physiological mechanisms mediating climate-induced forest mortality limits the ability to model or project these threshold events. We report here a direct and in situ study of the mechanisms underlying recent widespread and climate-induced trembling aspen (Populus tremuloides) forest mortality in western North America. We find substantial evidence of hydraulic failure of roots and branches linked to landscape patterns of canopy and root mortality in this species. On the contrary, we find no evidence that drought stress led to depletion of carbohydrate reserves. Our results illuminate proximate mechanisms underpinning recent aspen forest mortality and provide guidance for understanding and projecting forest die-offs under climate change.


Global Change Biology | 2013

Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die‐off and portends increased future risk

William R. L. Anderegg; Lenka Plavcová; Leander D. L. Anderegg; Uwe G. Hacke; Joseph A. Berry; Christopher B. Field

Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon-cycle feedbacks. Recent drought-induced, widespread forest die-offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die-off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die-off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate-vegetation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress-induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems.


Tree Physiology | 2013

Not all droughts are created equal: translating meteorological drought into woody plant mortality

Leander D. L. Anderegg; William R. L. Anderegg; Joseph A. Berry

Widespread drought-induced mortality of woody plants has recently occurred worldwide, is likely to be exacerbated by future climate change and holds large ecological consequences. Yet despite decades of research on plant-water relations, the pathways through which drought causes plant mortality are poorly understood. Recent work on the physiology of tree mortality has begun to reveal how physiological dysfunction induced by water stress leads to plant death; however, we are still far from being able to predict tree mortality using easily observed or modeled meteorological variables. In this review, we contend that, in order to fully understand when and where plants will exceed mortality thresholds when drought occurs, we must understand the entire path by which precipitation deficit is translated into physiological dysfunction and lasting physiological damage. In temperate ecosystems with seasonal climate patterns, precipitation characteristics such as seasonality, timing, form (snow versus rain) and intensity interact with edaphic characteristics to determine when and how much water is actually available to plants as soil moisture. Plant and community characteristics then mediate how quickly water is used and seasonally varying plant physiology determines whether the resulting soil moisture deficit is physiologically damaging. Recent research suggests that drought seasonality and timing matter for how an ecosystem experiences drought. But, mortality studies that bridge the gaps between climatology, hydrology, plant ecology and plant physiology are rare. Drawing upon a broad hydrological and ecological perspective, we highlight key and underappreciated processes that may mediate drought-induced tree mortality and propose steps to better include these components in current research.


Nature Ecology and Evolution | 2017

A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

Henry D. Adams; Melanie Zeppel; William R. L. Anderegg; Henrik Hartmann; Simon M. Landhäusser; David T. Tissue; Travis E. Huxman; Patrick J. Hudson; Trenton E. Franz; Craig D. Allen; Leander D. L. Anderegg; Greg A. Barron-Gafford; David J. Beerling; David D. Breshears; Timothy J. Brodribb; Harald Bugmann; Richard C. Cobb; Adam D. Collins; L. Turin Dickman; Honglang Duan; Brent E. Ewers; Lucía Galiano; David A. Galvez; Núria Garcia-Forner; Monica L. Gaylord; Matthew J. Germino; Arthur Gessler; Uwe G. Hacke; Rodrigo Hakamada; Andy Hector

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.The mechanisms underlying drought-induced tree mortality are not fully resolved. Here, the authors show that, across multiple tree species, loss of xylem conductivity above 60% is associated with mortality, while carbon starvation is not universal.


Global Change Biology | 2013

Drought characteristics' role in widespread aspen forest mortality across Colorado, USA

Leander D. L. Anderegg; William R. L. Anderegg; John T. Abatzoglou; Alexandra M. Hausladen; Joseph A. Berry

Globally documented widespread drought-induced forest mortality has important ramifications for plant community structure, ecosystem function, and the ecosystem services provided by forests. Yet the characteristics of drought seasonality, severity, and duration that trigger mortality events have received little attention despite evidence of changing precipitation regimes, shifting snow melt timing, and increasing temperature stress. This study draws upon stand level ecohydrology and statewide climate and spatial analysis to examine the drought characteristics implicated in the recent widespread mortality of trembling aspen (Populus tremuloides Michx.). We used isotopic observations of aspen xylem sap to determine water source use during natural and experimental drought in a region that experienced high tree mortality. We then drew upon multiple sources of climate data to characterize the drought that triggered aspen mortality. Finally, regression analysis was used to examine the drought characteristics most associated with the spatial patterns of aspen mortality across Colorado. Isotopic analysis indicated that aspens generally utilize shallow soil moisture with little plasticity during drought stress. Climate analysis showed that the mortality-inciting drought was unprecedented in the observational record, especially in 2002 growing season temperature and evaporative deficit, resulting in record low shallow soil moisture reserves. High 2002 summer temperature and low shallow soil moisture were most associated with the spatial patterns of aspen mortality. These results suggest that the 2002 drought subjected Colorado aspens to the most extreme growing season water stress of the past century by creating high atmospheric moisture demand and depleting the shallow soil moisture upon which aspens rely. Our findings highlight the important role of drought characteristics in mediating widespread aspen forest mortality, link this aspen die-off to regional climate change trends, and provide insight into future climate vulnerability of these forests.


Oecologia | 2014

Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off

William R. L. Anderegg; Leander D. L. Anderegg; Joseph A. Berry; Christopher B. Field

Understanding the pathways through which drought stress kills woody vegetation can improve projections of the impacts of climate change on ecosystems and carbon-cycle feedbacks. Continuous in situ measurements of whole trees during drought and as trees die hold promise to illuminate physiological pathways but are relatively rare. We monitored leaf characteristics, water use efficiency, water potentials, branch hydraulic conductivity, soil moisture, meteorological variables, and sap flux on mature healthy and sudden aspen decline-affected (SAD) trembling aspen (Populus tremuloides) ramets over two growing seasons, including a severe summer drought. We calculated daily estimates of whole-ramet hydraulic conductance and modeled whole-ramet assimilation. Healthy ramets experienced rapid declines of whole-ramet conductance during the severe drought, providing an analog for what likely occurred during the previous drought that induced SAD. Even in wetter periods, SAD-affected ramets exhibited fivefold lower whole-ramet hydraulic conductance and sevenfold lower assimilation than counterpart healthy ramets, mediated by changes in leaf area, water use efficiency, and embolism. Extant differences between healthy and SAD ramets reveal that ongoing multi-year forest die-off is primarily driven by loss of whole-ramet hydraulic capability, which in turn limits assimilation capacity. Branch-level measurements largely captured whole-plant hydraulic limitations during drought and mortality, but whole-plant measurements revealed a potential role of other losses in the hydraulic continuum. Our results highlight the importance of a whole-tree perspective in assessing physiological pathways to tree mortality and indicate that the effects of mortality on these forests’ assimilation and productivity are larger than expected based on canopy leaf area differences.


Conservation Biology | 2012

Effects of Widespread Drought-Induced Aspen Mortality on Understory Plants

William R. L. Anderegg; Leander D. L. Anderegg; Clare Sherman; Daniel S. Karp

Forest die-off around the world is expected to increase in coming decades as temperature increases due to climate change. Forest die-off will likely affect understory plant communities, which have substantial influence on regional biological diversity, ecosystem function, and land-atmosphere interactions, but how die-off alters these plant communities is largely unknown. We examined changes in understory plant communities following a widespread, drought-induced die-off of trembling aspen (Populus tremuloides) in the western United States. We assessed shrub and herbaceous cover and volume in quadrats in 55 plots located across a wide range of levels of aspen mortality. We measured species richness and composition of herbaceous plant communities by recording species presence and absence in 12 sets of paired (1 healthy, 1 dying) aspen plots. Although understory composition in healthy and dying stands was heterogeneous across the landscape, shrub abundance, cover, and volume were higher and abundance of herbaceous species, cover, and volume were lower in dying aspen stands. Shrub cover and volume increased from 2009 to 2011 in dying stands, which suggests that shrub growth and expansion is ongoing. Species richness of herbs declined by 23% in dying stands. Composition of herbs differed significantly between dying and healthy stands. Richness of non-native species did not differ between stand types. The understory community in dying aspen stands was not similar to other shrub-dominated plant communities in the region and may constitute a novel community. Our results suggest that changes in understory plant communities as forests die off could be a significant indirect effect of climate change on biological diversity and forest communities.


Global Change Biology | 2016

Drought stress limits the geographic ranges of two tree species via different physiological mechanisms

Leander D. L. Anderegg; Janneke HilleRisLambers

Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range-limit context, helps elucidate a mechanistic understanding of range constraints.


Ecology Letters | 2018

Within-species patterns challenge our understanding of the leaf economics spectrum

Leander D. L. Anderegg; Logan T. Berner; Grayson Badgley; Meera L. Sethi; Beverly E. Law; Janneke HilleRisLambers

The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait-trait covariation. We found that most variation in LES traits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species. LES traits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation in LES traits cannot always be interpreted as differences in resource use strategy.


Nature Climate Change | 2013

Consequences of widespread tree mortality triggered by drought and temperature stress

William R. L. Anderegg; Jeffrey M. Kane; Leander D. L. Anderegg

Collaboration


Dive into the Leander D. L. Anderegg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. Berry

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge