Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leandro R.S. Barbosa is active.

Publication


Featured researches published by Leandro R.S. Barbosa.


Biophysical Journal | 2010

The Importance of Protein-Protein Interactions on the pH-Induced Conformational Changes of Bovine Serum Albumin: A Small-Angle X-Ray Scattering Study

Leandro R.S. Barbosa; Maria Grazia Ortore; Francesco Spinozzi; Paolo Mariani; Sigrid Bernstorff; Rosangela Itri

The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of approximately 35-45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0-9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(1), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some re-folding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects.


Journal of the Royal Society Interface | 2009

Combining structure and dynamics: non-denaturing high-pressure effect on lysozyme in solution

Maria Grazia Ortore; Francesco Spinozzi; Paolo Mariani; Alessandro Paciaroni; Leandro R.S. Barbosa; Heinz Amenitsch; Milos Steinhart; Jacques Ollivier; Daniela Russo

Small-angle X-ray scattering (SAXS) and elastic and quasi-elastic neutron scattering techniques were used to investigate the high-pressure-induced changes on interactions, the low-resolution structure and the dynamics of lysozyme in solution. SAXS data, analysed using a global-fit procedure based on a new approach for hydrated protein form factor description, indicate that lysozyme completely maintains its globular structure up to 1500 bar, but significant modifications in the protein–protein interaction potential occur at approximately 600–1000 bar. Moreover, the mass density of the protein hydration water shows a clear discontinuity within this pressure range. Neutron scattering experiments indicate that the global and the local lysozyme dynamics change at a similar threshold pressure. A clear evolution of the internal protein dynamics from diffusing to more localized motions has also been probed. Protein structure and dynamics results have then been discussed in the context of protein–water interface and hydration water dynamics. According to SAXS results, the new configuration of water in the first hydration layer induced by pressure is suggested to be at the origin of the observed local mobility changes.


Brazilian Journal of Physics | 2004

Effect of urea on bovine serum albumin in aqueous and reverse micelle environments investigated by small angle X-ray scattering, fluorescence and circular dichroism

Rosangela Itri; Wilker Caetano; Leandro R.S. Barbosa; Mauricio S. Baptista

The influence that urea has on the conformation of water-soluble globular protein, bovine serum albumin (BSA), exposed directly to the aqueous solution as compared to the condition where the macromolecule is confined in the Aerosol-OT (AOT - sodium bis-2-ethylhexyl sulfosuccinate)/n-hexane/water reverse micelle (RM) is addressed. Small angle X-ray scattering (SAXS), tryptophan (Trp) fluorescence emission and circular dichroism (CD) spectra of aqueous BSA solution in the absence and in the presence of urea (3M and 5M) confirm the known denaturating effect of urea in proteins. The loss of the globular native structure is observed by the increase in the protein maximum dimension and gyration radius, through the Trp emission increase and maximum red-shift as well as the decrease in fi-helix content. In RMs, the Trp fluorescence and CD spectra show that BSA is mainly located in its interfacial region independently of the micellar size. Addition of urea in this BSA/RM system also causes changes in the Trp fluorescence (emission decrease and maximum red-shift) and in the BSA CD spectra (decrease in fi-helix content), which are compatible with the denaturation of the protein and Trp exposition to a more apolar environment in the RM. The fact that urea causes changes in the protein structure when it is located in the interfacial region (evidenced by CD) is interpreted as an indication that the direct interaction of urea with the protein is the major factor to explain its denaturating effect.


Nature Communications | 2015

Bacterial killing via a type IV secretion system

Diorge P. Souza; Gabriel Umaji Oka; Cristina E. Alvarez-Martinez; Alexandre W. Bisson-Filho; German Dunger; Lise Hobeika; Nayara S. Cavalcante; Marcos C. Alegria; Leandro R.S. Barbosa; Roberto K. Salinas; Cristiane R. Guzzo; Chuck S. Farah

Type IV secretion systems (T4SSs) are multiprotein complexes that transport effector proteins and protein-DNA complexes through bacterial membranes to the extracellular milieu or directly into the cytoplasm of other cells. Many bacteria of the family Xanthomonadaceae, which occupy diverse environmental niches, carry a T4SS with unknown function but with several characteristics that distinguishes it from other T4SSs. Here we show that the Xanthomonas citri T4SS provides these cells the capacity to kill other Gram-negative bacterial species in a contact-dependent manner. The secretion of one type IV bacterial effector protein is shown to require a conserved C-terminal domain and its bacteriolytic activity is neutralized by a cognate immunity protein whose 3D structure is similar to peptidoglycan hydrolase inhibitors. This is the first demonstration of the involvement of a T4SS in bacterial killing and points to this special class of T4SS as a mediator of both antagonistic and cooperative interbacterial interactions.


Journal of Colloid and Interface Science | 2003

Trifluoperazine effects on anionic and zwitterionic micelles: a study by small angle X-ray scattering.

Wilker Caetano; Leandro R.S. Barbosa; Rosangela Itri; Marcel Tabak

In this work small angle X-ray scattering (SAXS) studies on the interaction of the phenothiazine trifluoperazine (TFP, 2-10 mM), a cationic drug, with micelles of the zwitterionic surfactant 3-(N-hexadecyl-N,N-dimethylammonium) propane sulfonate (HPS, 30 mM) and the anionic surfactant sodium dodecyl sulfate (SDS, 40 mM) at pH 4.0, 7.0, and 9.0 are reported. The data were analyzed through the modeling of the micellar form factor and interference function, as well as by means of the distance distribution function p(r). For anionic micelles (SDS), the results evidence a micellar shape transformation from prolate ellipsoid to cylinder accompanied by micellar growth and surface charge screening as the molar ratio TFP:SDS increases in the complex for all values of pH. Small ellipsoids with axial ratio nu=1.5+/-0.1 (long dimension of 60 A) grow and reassemble into cylinder-like aggregates upon 5 mM drug incorporation (1 TFP:8 SDS monomers) with a decrease of the micelle surface charge. At 10 mM TFP:40 mM SDS cylindrical micelles are totally screened with an axial ratio nu approximately 4 (long dimension approximately 140 A at pH 7.0 and 9.0). However, at pH 4.0, where the drug is partially diprotonated, 10 mM TFP incorporation gives rise to a huge increase in micellar size, resulting in micelles at least 400 A long, without altering the intramicellar core. For zwitterionic micelles (HPS), the results have shown that the aggregates also resemble small prolate ellipsoids with averaged axial ratio approximately nu=1.6+/-0.1. Under TFP addition, both the paraffinic radius and the micellar size show a slight decrease, giving evidence that the micellar hydrophobic core may be affected by phenothiazine incorporation rather than that observed for the SDS/TFP comicelle. Therefore, our results demonstrate that the axial ratio and shape evolution of the surfactant:TFP complex are both dependent on surfactant surface-charge and drug:surfactant molar ratio. The results are compared with those recently obtained for another phenothiazine drug, chlorpromazine (CPZ), in SDS and HPS micelles (Caetano, Gelamo, Tabak, and Itri, J. Colloid Interface Science 248 (2002) 149).


Materials Science and Engineering: C | 2014

Synthesis and characterization of xanthan–hydroxyapatite nanocomposites for cellular uptake

Vania Blasques Bueno; Ricardo Bentini; Luiz H. Catalani; Leandro R.S. Barbosa; Denise F. S. Petri

In this work xanthan-nanohydroxyapatite (XnHAp) and its equivalent strontium substituted (XnHApSr) were synthesized by the precipitation of nanohydroxyapatite in xanthan aqueous solution, characterized and compared to conventional hydroxyapatite particles (HAp). XnHAp and XnHApSr were less crystalline than HAp, as revealed by X-ray diffraction. Xanthan chains enriched the surface of XnHAp and XnHApSr particles, increasing the zeta potential values from -(7±1)mV, determined for HAp, to -(17±3)mV and -(25±3)mV, respectively. This effect led to high colloidal stability of XnHAp and XnHApSr dispersions and acicular particles (140±10)nm long and (8±2)nm wide, as determined by scanning electron microscopy and atomic force microscopy. XnHAp and XnHApSr particles were added to xanthan hydrogels to produce compatible nanocomposites (XCA/XnHAp and XCA/XnHApSr). Dried nanocomposites presented surface energy, Youngs modulus and stress at break values comparable to those determined for bare xanthan matrix. Moreover, adding XnHAp or XnHApSr nanoparticles to xanthan hydrogel did not influence its porous morphology, gel content and swelling ratio. XCA/XnHAp and XCA/XnHApSr composites proved to be suitable for osteoblast growth and particularly XCA/XnHapSr composites induced higher alkaline phosphatase activity.


Journal of Biological Chemistry | 2014

Structural Characterization of Heparin-induced Glyceraldehyde-3-phosphate Dehydrogenase Protofibrils Preventing α-Synuclein Oligomeric Species Toxicity

César L. Ávila; Clarisa M. Torres-Bugeau; Leandro R.S. Barbosa; Elisa Morandé Sales; Mohand Ouidir Ouidja; Sergio B. Socías; M. Soledad Celej; Rita Raisman-Vozari; Dulce Papy-Garcia; Rosangela Itri; Rosana N. Chehín

Background: Although glycosaminoglycan-induced GAPDH prefibrillar species accelerates α-synuclein aggregation, its role in toxicity remains unclear. Results: The toxic effect exerted by α-synuclein oligomers on cell culture was abolished by GAPDH protofibril, which was identified and structurally characterized. Conclusion: GAPDH protofibrils can efficiently sequester α-synuclein toxic oligomers. Significance: GAPDH protofibrils may play an important role in neuronal proteostasis and could open a novel therapeutic strategy for synucleinopathies. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease.


Journal of Colloid and Interface Science | 2011

Fibrinogen stability under surfactant interaction

Natalia Hassan; Leandro R.S. Barbosa; Rosangela Itri; Juan M. Ruso

Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogens secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction.


Journal of Biological Chemistry | 2012

Characterization of Heparin-induced Glyceraldehyde-3-phosphate Dehydrogenase Early Amyloid-like Oligomers and Their Implication in α-Synuclein Aggregation

Clarisa M. Torres-Bugeau; César Ávila; Rita Raisman-Vozari; Dulce Papy-Garcia; Rosangela Itri; Leandro R.S. Barbosa; Leonardo M. Cortez; Valerie L. Sim; Rosana N. Chehín

Background: GAPDH and glycosaminoglycans (GAGs) have been routinely found in Parkinson disease amyloid aggregates. Results: Heparin and heparan sulfate induce the formation of GAPDH amyloid-like oligomers, which were characterized by using biophysical techniques. Conclusion: Heparin-induced GAPDH early oligomeric species are able to reduce the amount of α-synuclein (AS) prefibrillar species. Significance: GAPDH oligomeric species might be taken into account in recruiting of AS toxic species. Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of α-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote α-synuclein aggregation. Taking into account the toxicity of α-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.


Journal of Physical Chemistry B | 2008

Self-Assembling of Phenothiazine Compounds Investigated by Small-Angle X-ray Scattering and Electron Paramagnetic Resonance Spectroscopy

Leandro R.S. Barbosa; Rosangela Itri; Wilker Caetano; Diógenes de Sousa Neto; Marcel Tabak

Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 A(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.

Collaboration


Dive into the Leandro R.S. Barbosa's collaboration.

Top Co-Authors

Avatar

Rosangela Itri

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos H.I. Ramos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Mariani

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Marcel Tabak

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Rosangela Itri

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilker Caetano

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Francesco Spinozzi

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge