Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee A. Witters is active.

Publication


Featured researches published by Lee A. Witters.


Journal of Biological Chemistry | 2005

The Ca2+/Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases

Rebecca L. Hurley; Kristin A. Anderson; Jeanne M. Franzone; Bruce E. Kemp; Anthony R. Means; Lee A. Witters

The AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism in response to metabolic stress and to other regulatory signals. AMPK activity is absolutely dependent upon phosphorylation of AMPKαThr-172 in its activation loop by one or more AMPK kinases (AMPKKs). The tumor suppressor kinase, LKB1, is a major AMPKK present in a variety of tissues and cells, but several lines of evidence point to the existence of other AMPKKs. We have employed three cell lines deficient in LKB1 to study AMPK regulation and phosphorylation, HeLa, A549, and murine embryo fibroblasts derived from LKB-/- mice. In HeLa and A549 cells, mannitol, 2-deoxyglucose, and ionomycin, but not 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), treatment activates AMPK by αThr-172 phosphorylation. These responses, as well as the downstream effects of AMPK on the phosphorylation of acetyl-CoA carboxylase,arelargelyinhibitedbytheCa2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609. AMPKK activity in HeLa cell lysates measured in vitro is totally inhibited by STO-609 with an IC50 comparable with that of the known CaMKK isoforms, CaMKKα and CaMKKβ. Furthermore, 2-deoxyglucose- and ionomycin-stimulated AMPK activity, αThr-172 phosphorylation, and acetyl-CoA carboxylase phosphorylation are substantially reduced in HeLa cells transfected with small interfering RNAs specific for CaMKKα and CaMKKβ. Lastly, the activation of AMPK in response to ionomycin and 2-deoxyglucose is not impaired in LKB1-/- murine embryo fibroblasts. These data indicate that the CaMKKs function in intact cells as AMPKKs, predicting wider roles for these kinases in regulating AMPK activity in vivo.


FEBS Letters | 1999

AMP-activated protein kinase phosphorylation of endothelial NO synthase

Zhi-Ping Chen; Ken I. Mitchelhill; Belinda J. Michell; David Stapleton; Ignacio Rodríguez-Crespo; Lee A. Witters; David A. Power; Paul R. Ortiz de Montellano; Bruce E. Kemp

The AMP‐activated protein kinase (AMPK) in rat skeletal and cardiac muscle is activated by vigorous exercise and ischaemic stress. Under these conditions AMPK phosphorylates and inhibits acetyl‐coenzyme A carboxylase causing increased oxidation of fatty acids. Here we show that AMPK co‐immunoprecipitates with cardiac endothelial NO synthase (eNOS) and phosphorylates Ser‐1177 in the presence of Ca2+‐calmodulin (CaM) to activate eNOS both in vitro and during ischaemia in rat hearts. In the absence of Ca2+‐calmodulin, AMPK also phosphorylates eNOS at Thr‐495 in the CaM‐binding sequence, resulting in inhibition of eNOS activity but Thr‐495 phosphorylation is unchanged during ischaemia. Phosphorylation of eNOS by the AMPK in endothelial cells and myocytes provides a further regulatory link between metabolic stress and cardiovascular function.


American Journal of Physiology-endocrinology and Metabolism | 1999

Malonyl-CoA, fuel sensing, and insulin resistance

Neil B. Ruderman; Asish K. Saha; Demetrios G. Vavvas; Lee A. Witters

Malonyl-CoA is an allosteric inhibitor of carnitine palmitoyltransferase (CPT) I, the enzyme that controls the transfer of long-chain fatty acyl (LCFA)-CoAs into the mitochondria where they are oxidized. In rat skeletal muscle, the formation of malonyl-CoA is regulated acutely (in minutes) by changes in the activity of the beta-isoform of acetyl-CoA carboxylase (ACCbeta). This can occur by at least two mechanisms: one involving cytosolic citrate, an allosteric activator of ACCbeta and a precursor of its substrate cytosolic acetyl-CoA, and the other involving changes in ACCbeta phosphorylation. Increases in cytosolic citrate leading to an increase in the concentration of malonyl-CoA occur when muscle is presented with insulin and glucose, or when it is made inactive by denervation, in keeping with a diminished need for fatty acid oxidation in these situations. Conversely, during exercise, when the need of the muscle cell for fatty acid oxidation is increased, decreases in the ATP/AMP and/or creatine phosphate-to-creatine ratios activate an isoform of an AMP-activated protein kinase (AMPK), which phosphorylates ACCbeta and inhibits both its basal activity and activation by citrate. The central role of cytosolic citrate links this malonyl-CoA regulatory mechanism to the glucose-fatty acid cycle concept of Randle et al. (P. J. Randle, P. B. Garland. C. N. Hales, and E. A. Newsholme. Lancet 1: 785-789, 1963) and to a mechanism by which glucose might autoregulate its own use. A similar citrate-mediated malonyl-CoA regulatory mechanism appears to exist in other tissues, including the pancreatic beta-cell, the heart, and probably the central nervous system. It is our hypothesis that by altering the cytosolic concentrations of LCFA-CoA and diacylglycerol, and secondarily the activity of one or more protein kinase C isoforms, changes in malonyl-CoA provide a link between fuel metabolism and signal transduction in these cells. It is also our hypothesis that dysregulation of the malonyl-CoA regulatory mechanism, if it leads to sustained increases in the concentrations of malonyl-CoA and cytosolic LCFA-CoA, could play a key role in the pathogenesis of insulin resistance in muscle. That it may contribute to abnormalities associated with the insulin resistance syndrome in other tissues and the development of obesity has also been suggested. Studies are clearly needed to test these hypotheses and to explore the notion that exercise and some pharmacological agents that increase insulin sensitivity act via effects on malonyl-CoA and/or cytosolic LCFA-CoA.Malonyl-CoA is an allosteric inhibitor of carnitine palmitoyltransferase (CPT) I, the enzyme that controls the transfer of long-chain fatty acyl (LCFA)-CoAs into the mitochondria where they are oxidized. In rat skeletal muscle, the formation of malonyl-CoA is regulated acutely (in minutes) by changes in the activity of the β-isoform of acetyl-CoA carboxylase (ACCβ). This can occur by at least two mechanisms: one involving cytosolic citrate, an allosteric activator of ACCβ and a precursor of its substrate cytosolic acetyl-CoA, and the other involving changes in ACCβphosphorylation. Increases in cytosolic citrate leading to an increase in the concentration of malonyl-CoA occur when muscle is presented with insulin and glucose, or when it is made inactive by denervation, in keeping with a diminished need for fatty acid oxidation in these situations. Conversely, during exercise, when the need of the muscle cell for fatty acid oxidation is increased, decreases in the ATP/AMP and/or creatine phosphate-to-creatine ratios activate an isoform of an AMP-activated protein kinase (AMPK), which phosphorylates ACCβ and inhibits both its basal activity and activation by citrate. The central role of cytosolic citrate links this malonyl-CoA regulatory mechanism to the glucose-fatty acid cycle concept of Randle et al. (P. J. Randle, P. B. Garland. C. N. Hales, and E. A. Newsholme. Lancet 1: 785-789, 1963) and to a mechanism by which glucose might autoregulate its own use. A similar citrate-mediated malonyl-CoA regulatory mechanism appears to exist in other tissues, including the pancreatic β-cell, the heart, and probably the central nervous system. It is our hypothesis that by altering the cytosolic concentrations of LCFA-CoA and diacylglycerol, and secondarily the activity of one or more protein kinase C isoforms, changes in malonyl-CoA provide a link between fuel metabolism and signal transduction in these cells. It is also our hypothesis that dysregulation of the malonyl-CoA regulatory mechanism, if it leads to sustained increases in the concentrations of malonyl-CoA and cytosolic LCFA-CoA, could play a key role in the pathogenesis of insulin resistance in muscle. That it may contribute to abnormalities associated with the insulin resistance syndrome in other tissues and the development of obesity has also been suggested. Studies are clearly needed to test these hypotheses and to explore the notion that exercise and some pharmacological agents that increase insulin sensitivity act via effects on malonyl-CoA and/or cytosolic LCFA-CoA.


Journal of Biological Chemistry | 1996

Mammalian AMP-activated Protein Kinase Subfamily

David Stapleton; Kenneth I. Mitchelhill; Guang Gao; Jane Widmer; Belinda J. Michell; Trazel Teh; Colin M. House; C. S. Fernandez; T. Cox; Lee A. Witters; Bruce E. Kemp

The mammalian 5′-AMP-activated protein kinase (AMPK) is related to a growing family of protein kinases in yeast and plants that are regulated by nutritional stress. We find the most prominent expressed form of the hepatic AMPK catalytic subunit (α1) is distinct from the previously cloned kinase subunit (α2). The α1 (548 residues) and α2 (552 residues) isoforms have 90% amino acid sequence identity within the catalytic core but only 61% identity elsewhere. The tissue distribution of the AMPK activity most closely parallels the low abundance 6-kilobase α1 mRNA distribution and the α1 immunoreactivity rather than α2, with substantial amounts in kidney, liver, lung, heart, and brain. Both α1 and α2 isoforms are stimulated by AMP and contain noncatalytic β and γ subunits. The liver α1 isoform accounts for approximately 94% of the enzyme activity measured using the SAMS peptide substrate. The tissue distribution of the α2 immunoreactivity parallels the α2 8.5-kilobase mRNA and is most prominent in skeletal muscle, heart, and liver. Isoforms of the β and γ subunits present in the human genome sequence reveal that the AMPK consists of a family of isoenzymes.


Trends in Biochemical Sciences | 1999

Dealing with energy demand: the AMP-activated protein kinase

Bruce E. Kemp; Ken I. Mitchelhill; David Stapleton; Belinda J. Michell; Zhi-Ping Chen; Lee A. Witters

The AMP-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that is found in all eukaryotes. AMPK activity is regulated by vigorous exercise, nutrient starvation and ischemia/hypoxia, and modulates many aspects of mammalian cell metabolism. The AMPK yeast homolog, Snf1p, plays a major role in adaption to glucose deprivation. In mammals, AMPK also has diverse roles that extend from energy metabolism through to transcriptional control.


Current Biology | 2003

AMPK β Subunit Targets Metabolic Stress Sensing to Glycogen

Galina Polekhina; Abhilasha Gupta; Belinda J. Michell; Bryce van Denderen; Sid Murthy; Susanne C. Feil; Ian G. Jennings; Duncan J. Campbell; Lee A. Witters; Michael W. Parker; Bruce E. Kemp; David Stapleton

Abstract AMP-activated protein kinase (AMPK) is a multisubstrate enzyme activated by increases in AMP during metabolic stress caused by exercise, hypoxia, lack of cell nutrients [1], as well as hormones, including adiponectin and leptin [2, 3]. Furthermore, metformin and rosiglitazone, frontline drugs used for the treatment of type II diabetes, activate AMPK [4]. Mammalian AMPK is an αβγ heterotrimer with multiple isoforms of each subunit comprising α1, α2, β1, β2, γ1, γ2, and γ3, which have varying tissue and subcellular expression [5, 6]. Mutations in the AMPK γ subunit cause glycogen storage disease in humans [7], but the molecular relationship between glycogen and the AMPK/Snf1p kinase subfamily has not been apparent. We show that the AMPK β subunit contains a functional glycogen binding domain (β-GBD) that is most closely related to isoamylase domains found in glycogen and starch branching enzymes. Mutation of key glycogen binding residues, predicted by molecular modeling, completely abolished β-GBD binding to glycogen. AMPK binds to glycogen but retains full activity. Overexpressed AMPK β1 localized to specific mammalian subcellular structures that corresponded with the expression pattern of glycogen phosphorylase. Glycogen binding provides an architectural link between AMPK and a major cellular energy store and juxtaposes AMPK to glycogen bound phosphatases.


Biochemical Journal | 1999

AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target

Deborah M. Muoio; Kimberly Seefeld; Lee A. Witters; Rosalind A. Coleman

AMP-activated kinase (AMPK) is activated in response to metabolic stresses that deplete cellular ATP, and in both liver and skeletal muscle, activated AMPK stimulates fatty acid oxidation. To determine whether AMPK might reciprocally regulate glycerolipid synthesis, we studied liver and skeletal-muscle lipid metabolism in the presence of 5-amino-4-imidazolecarboxamide (AICA) riboside, a cell-permeable compound whose phosphorylated metabolite activates AMPK. Adding AICA riboside to cultured rat hepatocytes for 3 h decreased [14C]oleate and [3H]glycerol incorporation into triacylglycerol (TAG) by 50% and 38% respectively, and decreased oleate labelling of diacylglycerol by 60%. In isolated mouse soleus, a highly oxidative muscle, incubation with AICA riboside for 90 min decreased [14C]oleate incorporation into TAG by 37% and increased 14CO2 production by 48%. When insulin was present, [14C]oleate oxidation was 49% lower and [14C]oleate incorporation into TAG was 62% higher than under basal conditions. AICA riboside blocked insulins antioxidative and lipogenic effects, increasing fatty acid oxidation by 78% and decreasing labelled TAG 43%. Similar results on fatty acid oxidation and acylglycerol synthesis were observed in C2C12 myoblasts, and in differentiated C2C12 myotubes, AICA riboside also inhibited the hydrolysis of intracellular TAG. These data suggest that AICA riboside might inhibit sn-glycerol-3-phosphate acyltransferase (GPAT), which catalyses the committed step in the pathway of glycerolipid biosynthesis. Incubating rat hepatocytes with AICA riboside for both 15 and 30 min decreased mitochondrial GPAT activity 22-34% without affecting microsomal GPAT, diacylglycerol acyltransferase or acyl-CoA synthetase activities. Finally, purified recombinant AMPKalpha1 and AMPKalpha2 inhibited hepatic mitochondrial GPAT in a time-and ATP-dependent manner. These data show that AMPK reciprocally regulates acyl-CoA channelling towards beta-oxidation and away from glycerolipid biosynthesis, and provide strong evidence that AMPK phosphorylates and inhibits mitochondrial GPAT.


Journal of Biological Chemistry | 1993

Acetyl CoA carboxylase regulation of fatty acid oxidation in the heart

Maruf Saddik; J. Gamble; Lee A. Witters; Gary D. Lopaschuk

The role of acetyl-coenzyme A carboxylase (ACC) in regulating fatty acid oxidation was investigated in isolated fatty acid perfused working rat hearts. Overall fatty acid oxidation rates were determined by addition of 1.2 mM [3H]palmitate to the perfusate of hearts in which the endogenous triglyceride pool was prelabeled with [14C]palmitate. Rates of both exogenous and endogenous fatty acid oxidation were measured by simultaneous measurement of 3H2O and 14CO2 production, respectively. A second series of hearts were perfused under similar conditions except that [U-14C]glucose was present in the perfusate for measurement of glucose oxidation rates. Addition of dichloroacetate (DCA, 1 mM) to the perfusate resulted in a dramatic stimulation of glucose oxidation (a 411% increase), with a parallel decrease in fatty acid oxidation (from 305 +/- 51 to 206 +/- 40 nmol/g dry weight.min.unit work). DCA treatment increased the contribution of glucose oxidation to ATP production from 7.1 to 30.6%, while decreasing the contribution of overall fatty acid oxidation from 92.9 to 69.4%. Tissue levels of malonyl-CoA in hearts treated with DCA were higher compared to controls (14.0 +/- 0.6 and 10.0 +/- 0.7 nmol/g dry weight, respectively) and were negatively correlated (r = -0.85) with overall fatty acid oxidation rates. Acetyl-CoA levels were also significantly higher in DCA-treated hearts, and a positive correlation (r = 0.88) was seen between myocardial acetyl-CoA and malonyl-CoA levels. This suggests that DCA treatment increased the supply of acetyl-CoA for ACC. Western blots revealed the presence of both the 280-kDa (ACC-280) and the 265-kDa (ACC-265) isoforms of ACC in cardiac tissue, with a predominance of ACC-280. The activity of ACC extracted from hearts was similar in both groups when assayed under optimal conditions of acetyl-CoA and citrate. However, using affinity purified ACC, it was demonstrated that heart ACC (predominantly ACC-280) had a higher Km for acetyl-CoA than ACC isolated from white adipose tissue (predominantly ACC-265). We conclude that ACC is an important regulator of fatty acid oxidation in the heart and that acetyl-CoA supply is a key determinant of heart ACC-280 activity. As acetyl-CoA levels increase, ACC-280 is activated resulting in an increase in malonyl-CoA inhibition of fatty acid oxidation.


Genes to Cells | 2003

A possible linkage between AMP‐activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway

Naoki Kimura; Chiharu Tokunaga; Sushila R. Dalal; Christine A. Richardson; Ken-ichi Yoshino; Kenta Hara; Bruce E. Kemp; Lee A. Witters; Osamu Mimura; Kazuyoshi Yonezawa

Background: The mammalian target of rapamycin (mTOR) regulates multiple cellular functions including translation in response to nutrients, especially amino acids. AMP‐activated protein kinase (AMPK) modulates metabolism in response to energy demand by responding to changes in AMP.


Journal of Clinical Investigation | 2001

The blooming of the French lilac

Lee A. Witters

The history of diabetes mellitus is replete with many therapies, nearly all, including insulin, first given without any knowledge of a mechanism of action. Beginning with early Egyptian physicians who, according to the Ebers Papyrus of 1500 B.C.E., prescribed a mixture of cakes, wheat grains, fresh grits, green lead, earth, and water, up to the more recent introduction of the thiazolidinediones, knowledge of physiologic effects preceded by years or centuries any knowledge as to what the medicament actually did. In medieval times, a prescription of Galega officinalis was said to relieve the intense urination accompanying the disease that came to have the name of diabetes mellitus. G. officinalis, also known as Goat’s rue, the French lilac or Italian fitch (Figure ​(Figure1),1), was also given during the plague epidemics to promote perspiration and has been used as a galactogogue in cows. The active ingredient in the French lilac that produced the lowering of blood glucose was shown to be galegine or isoamylene guanidine (1). A curious chapter in the history of guanidine-based hypoglycemic agents arose from the mistaken notion that the tetany of hypoparathyroidism was due to the production of increased guanidine following parathyroidectomy, leading to the demonstration that an infusion of guanidine produced lowering of blood glucose (2). While guanidine itself and certain derivatives are too toxic for the treatment of diabetes mellitus, the biguanides (two linked guanidine rings) have proved useful, and three biguanides became available for diabetes therapy in the 1950s. Phenformin and buformin, the former becoming quite popular in the 1960s, were withdrawn from the pharmacopoeia in the early 1970s due to the emergence of frequent lactic acidosis and increased cardiac mortality (1). Metformin, a less lipophilic biguanide, proved safer and, after 20 years of use in Europe, was approved for use in the USA in 1995. Figure 1 The bloom of the French lilac. This blooming G. officinalis (Goat’s rue; French lilac; Italian fitch) is rich in guanidine. The plant’s long-recognized hypoglycemic properties led eventually to the synthesis of the biguanide compound metformin. ...

Collaboration


Dive into the Lee A. Witters's collaboration.

Top Co-Authors

Avatar

Bruce E. Kemp

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belinda J. Michell

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurie J. Goodyear

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frosa Katsis

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge