Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph L. Evans is active.

Publication


Featured researches published by Joseph L. Evans.


Diabetes Technology & Therapeutics | 2000

α-Lipoic Acid: A Multifunctional Antioxidant That Improves Insulin Sensitivity in Patients with Type 2 Diabetes

Joseph L. Evans; Ira D. Goldfine

α-Lipoic acid (LA) is a disulfide compound that is produced in small quantities in cells, and functions naturally as a co-enzyme in the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase mitochondrial enzyme complexes. In pharmacological doses, LA is a multifunctional antioxidant. LA has been used in Germany for over 30 years for the treatment of diabetes-induced neuropathy. In patients with type 2 diabetes, recent studies have reported that intravenous (i.v.) infusion of LA increases insulin-mediated glucose disposal, whereas oral administration of LA has only marginal effects. If the limitations of oral therapy can be overcome, LA could emerge as a safe and effective adjunctive antidiabetic agent with insulin sensitizing activity.


Diabetes-metabolism Research and Reviews | 2008

Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes

Cesar Albarracin; Burcham Fuqua; Joseph L. Evans; Ira D. Goldfine

Chromium and biotin play essential roles in regulating carbohydrate metabolism. This randomized, double‐blind, placebo‐controlled study evaluated the efficacy and safety of the combination of chromium picolinate and biotin on glycaemic control.


Expert Opinion on Investigational Drugs | 1999

Protein tyrosine phosphatases: their role in insulin action and potential as drug targets

Joseph L. Evans; Bahija Jallal

Protein tyrosine phosphatases (PTPases) are the enzymes responsible for the selective dephosphorylation of tyrosine residues. PTPases function to regulate a wide array of biological responses mediated by growth factors and other stimuli by balancing the cellular level of phosphotyrosine in concert with their counterparts, protein tyrosine kinases. The important roles which PTPases play in regulating intracellular signalling and, ultimately, biological function along with the recent availability of information regarding their structural features has highlighted them as potential targets for pharmacological modulation. This is demonstrated by the increased level of activity directed towards the identification of novel small-molecule PTPase inhibitors. The rationale and potential utility of this drug discovery approach is discussed here, with particular emphasis on its application for the treatment of insulin resistance and Type 2 diabetes.


Diabetologia | 1994

EXPRESSION OF HUMAN GLUT4 IN MICE RESULTS IN INCREASED INSULIN ACTION

R. O. Deems; Joseph L. Evans; R. W. Deacon; C. M. Honer; D. T. Chu; K. Bürki; W. S. Fillers; D. K. Cohen; D. A. Young

SummaryGlucose metabolism was evaluated in transgenic mice expressing the human GLUT 4 glucose transporter. Fed GLUT 4 transgenic mice exhibited a 32% and 56% reduction in serum glucose and insulin and a 69% and 33% increase in non-esterified fatty acid and lactate levels, respectively. Transgenic mice exhibited a significant increase in whole-body glucose disposal during a euglycaemic-hyperinsulinaemic clamp. Insulin-stimulated glucose uptake in isolated soleus muscles and adipocytes was greater in transgenic compared to control mice due to increased basal glucose uptake. Transgenic mice displayed increased glycogen levels in liver and gastrocnemius muscle, and increased insulin-stimulated 14C-glycogen accumulation in isolated soleus muscle. We conclude that over-expression of the GLUT 4 glucose transporter in mice results in 1) an increase in whole-body glucose disposal and storage, and 2) an increase in both basal and insulin-stimulated glucose uptake and disposal in vitro. These changes resulted in the reduction of serum glucose and insulin levels. These results provide direct evidence that glucose transport (and GLUT 4 per se) plays a significant role in regulating wholebody glucose homeostasis. Additionally, these data support the idea that pharmacological strategies directed at increasing the expression of GLUT 4 protein may have beneficial (hypoglycaemic) effects in the diabetic state.


Endocrine Practice | 2002

Pharmacokinetics, tolerability, and fructosamine-lowering effect of a novel, controlled-release formulation of alpha-lipoic acid.

Joseph L. Evans; Catherine J. Heymann; Ira D. Goldfine; Laurence A. Gavin

OBJECTIVE To determine the pharmacokinetics, safety, and tolerability of a novel, controlled-release oral formulation of alpha-lipoic acid (LA) and to investigate whether sustaining the concentration of LA in plasma would have a beneficial effect on glycemic control in patients with type 2 diabetes. METHODS For the pharmacokinetic study, a single, 600-mg dose of either controlled-release LA (CRLA) or quick-release LA (QRLA) was administered orally to 12 normal human subjects. The plasma profile of LA was determined for 24 hours after administration of the dose,and pharmacokinetic analyses were performed. For the safety and tolerability study, 21 patients with type 2 diabetes were given 900 mg of CRLA daily for 6 weeks, followed by 1,200 mg of CRLA daily for an additional 6 weeks. Active treatment was followed by a 3-week washout period. Throughout the study, patients continued to take their prestudy antidiabetic medications, which included metformin (Glucophage), sulfonylureas (Amaryl, glyburide, and Glucotrol), acarbose (Precose), troglitazone (Rezulin), and insulin (either as monotherapy or in combination). CRLA was evaluated for safety and tolerability as well as for effects on glycemic control. RESULTS The Tmax (time to maximal plasma concentration) of LA administered as CRLA was 1.25 hours and was approximately 2.5-fold longer in comparison with the Tmax for QRLA (Tn,5X = 0.5 hour; P<0.02). No severe side effects or changes in either liver or kidney function or hematologic profiles were noted after the administration of CRLA. In 15 patients, the mean plasma fructosamine concentration was reduced from 313 to 283 micromol/L(P<0.05) after 12 weeks of treatment with CRLA. CONCLUSION CRLA increased the plasma concentration of LA over time in healthy subjects, and CRLA was safe, well tolerated, and effective in reducing plasma fructosamine in patients with type 2 diabetes.


Current Diabetes Reviews | 2005

Novel Approach to Treat Insulin Resistance, Type 2 Diabetes, and the Metabolic Syndrome: Simultaneous Activation of PPARα, PPARγ, and PPARδ

Joseph L. Evans; Jack J. Lin; Ira D. Goldfine

Only a limited number of treatment options are available for insulin resistance, a major cause of type 2 diabetes (T2D) and the metabolic syndrome. None adequately address the simultaneous defects in lipid and carbohydrate metabolism. Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors that function as ligand-activated transcription factors. The PPAR family, which includes pparα, pparγ, and pparδ, are receptors for fatty acids and their metabolites. Consequently, PPARs play a critical physiological role in the regulation of genes involved in glucose, fatty acid, and cholesterol metabolism. pparα and pparγ also mediate antiinflammatory effects, which likely contribute to their anti-atherogenic activities. A number of PPAR agonist drugs are marketed for the treatment of individual aspects of the metabolic syndrome. Dual agonists that target both pparα and pparγ are being developed in an effort to broaden the activities and beneficial effects of the ligands selective for pparγ. To address the multiple metabolic defects associated with insulin resistance, T2D and the metabolic syndrome, the simultaneous activation of pparα, pparγ, and pparδ by a single compound (i.e. a PPAR pan-agonist) is being pursued. Similar to pparα and pparγ, pparδ plays a significant role in the regulation of genes that control lipid metabolism. Unlike pparγ, pparδ is not adipogenic, and activation of pparδ is associated with an anti-obesity and more insulin-sensitive phenotype. While there are no currently marketed drugs known to target pparδ, pre-clinical studies indicate that pparδ agonists increase energy expenditure and elevate plasma high-density lipoprotein (HDL) cholesterol. Recent studies in rodents and primates suggest that a small molecule targeting all three isoforms of PPAR would provide a significantly improved treatment option.


Cellular Signalling | 1995

The effects of wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, on insulin-stimulated glucose transport, GLUT4 translocation, antilipolysis, and DNA synthesis

Joseph L. Evans; Christian M. Honer; Barbara E. Womelsdorf; Emma L. Kaplan; Philip A. Bell

PI 3-kinase, an enzyme that selectively phosphorylates the 3-position of the inositol ring, is acutely activated by insulin and other growth factors. The physiological significance of PI 3-kinase activation and, more specifically, its role in insulin action is an area under intense investigation. In this study, we have examined the role of PI 3-kinase activation in mediating selected metabolic and mitogenic effects of insulin employing the fungal metabolite wortmannin, a potent inhibitor of PI 3-kinase activity. In isolated rat and cultured 3T3-L1 adipocytes, wortmannin inhibited insulin-stimulated glucose transport (IC50 = 9 nM) without a significant effect on basal transport. Insulin-stimulated translocation of GLUT4 in isolated rat adipocytes was markedly inhibited by wortmannin. Wortmannin had no effect on either basal or insulin-stimulated glucose utilization in L6 myocytes, a skeletal muscle cell line in which GLUT1 is the predominant transporter isoform. Wortmannin also partially antagonized the antilipolytic effect of insulin on adenosine deaminase-stimulated lipolysis in isolated rat adipocytes. Furthermore, wortmannin caused a significant reduction in insulin-stimulated DNA synthesis in Fao rat hepatoma cells. We conclude that PI 3-kinase activation is necessary for maximum insulin-stimulated glucose transport, translocation of GLUT4, antilipolysis and DNA synthesis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Dietary fructose accelerates the development of diabetes in UCD-T2DM rats: amelioration by the antioxidant, α-lipoic acid

Bethany P. Cummings; Kimber L. Stanhope; James L. Graham; Joseph L. Evans; Denis G. Baskin; Steven C. Griffen; Peter J. Havel

Sustained fructose consumption has been shown to induce insulin resistance and glucose intolerance, in part, by promoting oxidative stress. Alpha-lipoic acid (LA) is an antioxidant with insulin-sensitizing activity. The effect of sustained fructose consumption (20% of energy) on the development of T2DM and the effects of daily LA supplementation in fructose-fed University of California, Davis-Type 2 diabetes mellitus (UCD-T2DM) rats, a model of polygenic obese T2DM, was investigated. At 2 mo of age, animals were divided into three groups: control, fructose, and fructose + LA (80 mg LA.kg body wt(-1).day(-1)). One subset was followed until diabetes onset, while another subset was euthanized at 4 mo of age for tissue collection. Monthly fasted blood samples were collected, and an intravenous glucose tolerance test (IVGTT) was performed. Fructose feeding accelerated diabetes onset by 2.6 +/- 0.5 mo compared with control (P < 0.01), without affecting body weight. LA supplementation delayed diabetes onset in fructose-fed animals by 1.0 +/- 0.7 mo (P < 0.05). Fructose consumption lowered the GSH/GSSG ratio, while LA attenuated the fructose-induced decrease of oxidative capacity. Insulin sensitivity, as assessed by IVGTT, decreased in both fructose-fed and fructose + LA-supplemented rats. However, glucose excursions in fructose-fed LA-supplemented animals were normalized to those of control via increased glucose-stimulated insulin secretion. Fasting plasma triglycerides were twofold higher in fructose-fed compared with control animals at 4 mo, and triglyceride exposure during IVGTT was increased in both the fructose and fructose + LA groups compared with control. In conclusion, dietary fructose accelerates the onset of T2DM in UCD-T2DM rats, and LA ameliorates the effects of fructose by improving glucose homeostasis, possibly by preserving beta-cell function.


European Journal of Clinical Nutrition | 2013

Chitin-glucan fiber effects on oxidized low-density lipoprotein: a randomized controlled trial

H E Bays; Joseph L. Evans; Kevin C. Maki; M Evans; V Maquet; R Cooper; J W Anderson

Background/objectives:Elevated oxidized low-density lipoprotein (OxLDL) may promote inflammation, and is associated with increased risk of atherosclerotic coronary heart disease and worsening complications of diabetes mellitus. The primary objective of this study was to evaluate the efficacy of chitin-glucan (CG), alone and in combination with a potentially anti-inflammatory olive oil (OO) extract, for reducing OxLDL in subjects with borderline to high LDL cholesterol (LDL-C) levels.Subjects/methods:This 6-week, randomized, double-blind, placebo-controlled study of a novel, insoluble fiber derived from the Aspergillus niger mycelium, CG, evaluated 130 subjects free of diabetes mellitus with fasting LDL-C 3.37–4.92 mmol/l and glucose ⩽6.94 mmol/l. Participants were randomly assigned to receive CG (4.5 g/day; n=33), CG (1.5 g/day; n=32), CG (1.5 g/day) plus OO extract (135 mg/day; n=30), or matching placebo (n=35).Results:Administration of 4.5 g/day CG for 6 weeks significantly reduced OxLDL compared with placebo (P=0.035). At the end of study, CG was associated with lower LDL-C levels relative to placebo, although this difference was statistically significant only for the CG 1.5 g/day group (P=0.019). CG did not significantly affect high-density lipoprotein cholesterol, triglycerides, glucose, insulin or F2-isoprostane levels. Adverse events did not substantively differ between treatments and placebo.Conclusions:In this 6-week study, CG (4.5 g/day) reduced OxLDL, an effect that might affect the risk for atherosclerosis.


Journal of diabetes science and technology | 2010

Effects of Controlled-Release Alpha Lipoic Acid In Lean, Nondiabetic Patients with Polycystic Ovary Syndrome.

Umesh Masharani; Christine Gjerde; Joseph L. Evans; Jack F. Youngren; Ira D. Goldfine

Background: The purpose of this study was to determine whether a preparation of controlled-release alpha lipoic acid (CRLA) Influences features of the polycystic ovary syndrome (PCOS). Methods: We administered CRLA 600 mg twice daily for 16 weeks to six lean, nondiabetic patients with PCOS. Insulin sensitivity was measured by the euglycemic, hyperinsulinemic clamp. Plasma lipids were measured by vertical ultracentrifugation. Oxidative stress markers were measured in serum. Results: At the end of 16 weeks of CRLA treatment, there was a 13.5% improvement in insulin sensitivity as determined by the euglycemic, hyperinsulinemic clamp (p < .03). There was also a lowering of triglyceride levels (p < .04) and a shift in the distribution of low-density lipoprotein (LDL) particles toward the larger, more buoyant LDL subclass fraction. Two of the subjects who were not on oral contraception had an increased number of menstrual cycles. Controlled-release alpha lipoic acid treatment, however, was neither associated with an increase in plasma antioxidant capacity nor with a reduction in plasma lipid oxidation products. Conclusions: These data suggest that the CRLA has positive effects on the PCOS phenotype. The effects of CRLA, however, may have been exerted through a mechanism not involving changes in oxidative stress.

Collaboration


Dive into the Joseph L. Evans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. S. De Bono

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Adam P. Dicker

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Felix Y. Feng

University of California

View shared research outputs
Top Co-Authors

Avatar

Hendrik-Tobias Arkenau

Sarah Cannon Research Institute

View shared research outputs
Top Co-Authors

Avatar

Karen E. Knudsen

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge