Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee D. Feinberg is active.

Publication


Featured researches published by Lee D. Feinberg.


The Astrophysical Journal | 1998

The On-Orbit Performance of the Space Telescope Imaging Spectrograph

Randy A. Kimble; Bruce E. Woodgate; Charles W. Bowers; S. B. Kraemer; Mary Elizabeth Kaiser; T. R. Gull; S. R. Heap; Anthony C. Danks; A. Boggess; Richard F. Green; J. B. Hutchings; Edward B. Jenkins; Charles L. Joseph; J. L. Linsky; Stephen P. Maran; H. W. Moos; Fred L. Roesler; J. G. Timothy; Donna E. Weistrop; J. F. Grady; J. J. Loiacono; L. W. Brown; Mark D. Brumfield; Lee D. Feinberg; M. N. Isaacs; Carolyn A. Krebs; V. L. Krueger; R. W. Melcher; F. J. Rebar; H. D. Vitagliano

The Space Telescope Imaging Spectrograph (STIS) was successfully installed into the Hubble Space Telescope (HST) in 1997 February, during the second HST servicing mission, STS-82. STIS is a versatile spectrograph, covering the 115-1000 nm wavelength range in a variety of spectroscopic and imaging modes that take advantage of the angular resolution, unobstructed wavelength coverage, and dark sky offered by the HST. In the months since launch, a number of performance tests and calibrations have been carried out and are continuing. These tests demonstrate that the instrument is performing very well. We present here a synopsis of the results to date.


Optical Engineering | 2012

James Webb Space Telescope: large deployable cryogenic telescope in space

Paul A. Lightsey; Charles B. Atkinson; Mark Clampin; Lee D. Feinberg

The James Webb Space Telescope (JWST) is an infrared space telescope designed to explore four major science themes: first light and reionization, the assembly of galaxies, the birth of stars and protoplanetary systems, and planetary systems and origins of life. JWST is a segmented architecture telescope with an aperture of 6.6 m. It will operate at cryogenic temperature (40 K), achieved via passive cooling, in an orbit about the Earth-Sun second Lagrange point (L2). Passive cooling is facilitated by means of a large sunshield that provides thermal isolation and protection from direct illumination from the Sun. The large size of the telescope and spacecraft systems require that they are stowed for launch in a configuration that fits the Ariane 5 fairing, and then deployed after launch. Routine wavefront sensing and control measurements are used to achieve phasing of the segmented primary mirror and initial alignment of the telescope. A suite of instruments will provide the capability to observe over a spectral range from 0.6- to 27-μm wavelengths with imaging and spectroscopic configurations. An overview is presented of the architecture and selected optical design features of JWST are described.


Astronomical Telescopes and Instrumentation | 2000

Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers

David T. Leisawitz; W. C. Danchi; Michael DiPirro; Lee D. Feinberg; Daniel Y. Gezari; Mike Hagopian; William D. Langer; John C. Mather; S. H. Moseley; Michael Shao; R. F. Silverberg; Johannes G. Staguhn; Mark R. Swain; H. W. Yorke; Xiaolei Zhang

Far infrared interferometers in space would enable extraordinary measurements of the early universe, the formation of galaxies, stars, and planets, and would have great discovery potential. Since half the luminosity of the universe and 98% of the photons released since the Big Bang are now observable at far IR wavelengths (40 - 500 micrometers ), and the Earths atmosphere prevents sensitive observations from the ground, this is one of the last unexplored frontiers of space astronomy. We present the engineering and technology requirements that stem from a set of compelling scientific goals and discuss possible configurations for two proposed NASA missions, the Space Infrared Interferometric Telescope and the Submillimeter Probe of the Evolution of Cosmic Structure.


The Astrophysical Journal | 1998

Gas Cloud Kinematics near the Nucleus of NGC 4151

J. B. Hutchings; D. M. Crenshaw; Mary Elizabeth Kaiser; Steven B. Kraemer; Donna E. Weistrop; Stefi A. Baum; Charles W. Bowers; Lee D. Feinberg; Richard F. Green; T. R. Gull; George F. Hartig; G. Hill; D. J. Lindler

We report early observations with Space Telescope Imaging Spectrometer (STIS) of the nuclear region of NGC 4151. Direct images in [O II] and [O III] and slitless medium-dispersion spectral images of the Hβ to [O III] region were obtained. A slitless UV spectral image was taken of the C IV 1550 A region. We present radial velocities and line ratios of ~40 clouds resolved in the narrow-line region (NLR). The kinematics suggest outflow within a biconical region about the nucleus, centered on the radio axis and viewed near the edge of the cones. A few high-velocity clouds are seen that do not fit this simple picture. Line ratios indicate that the NLR gas is photoionized by the central continuum source and that there may be a density gradient in the NLR. These observations are being followed by an extensive STIS program on NGC 4151.


Proceedings of SPIE | 2007

TRL-6 for JWST wavefront sensing and control

Lee D. Feinberg; Bruce H. Dean; David L. Aronstein; Charles W. Bowers; William L. Hayden; Richard G. Lyon; Ron Shiri; J. Scott Smith; D. Scott Acton; Larkin Carey; Adam R. Contos; Erin Sabatke; John P. Schwenker; Duncan Shields; Tim Towell; Fang Shi; Luis Meza

NASAs Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed.


Proceedings of SPIE | 2012

Wavefront Sensing and Controls for the James Webb Space Telescope

D. Scott Acton; J. Scott Knight; Adam R. Contos; Stefano Grimaldi; James P. Terry; Paul A. Lightsey; Allison Barto; B. League; Bruce H. Dean; J. Scott Smith; Charles W. Bowers; David L. Aronstein; Lee D. Feinberg; William L. Hayden; Thomas Comeau; Rémi Soummer; Erin Elliott; Marshall D. Perrin; Carl W. Starr

The James Webb Space Telescope (JWST) is a segmented deployable telescope, utilizing 6 degrees of freedom for adjustment of the Secondary Mirror (SM) and 7 degrees of freedom for adjustment of each of its 18 segments in the Primary Mirror (PM). When deployed, the PM segments and the SM will be placed in their correct optical positions to within a few mm, with accordingly large wavefront errors. The challenge, therefore, is to position each of these optical elements in order to correct the deployment errors and produce a diffraction-limited telescope, at λ=2μm, across the entire science field. This paper describes a suite of processes, algorithms, and software that has been developed to achieve this precise alignment, using images taken from JWST’s science instruments during commissioning. The results of flight-like end-to-end simulations showing the commissioning process are also presented.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

Matthew R. Bolcar; Kunjithapatham Balasubramanian; Julie A. Crooke; Lee D. Feinberg; Manuel A. Quijada; Bernard J. Rauscher; David C. Redding; Norman Rioux; Stuart B. Shaklan; H. Philip Stahl; Carl Michael Stahle; Harley Thronson

Abstract. The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, “Enduring Quests, Daring Visions.” The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.


Optical Engineering | 2012

Space telescope design considerations

Lee D. Feinberg; Lester M. Cohen; Bruce H. Dean; William L. Hayden; Joseph M. Howard; Ritva A. M. Keski-Kuha

The design considerations for astronomical space telescopes cover many disciplines but can be simplified into two overarching constraints: the desire to maximize science while adhering to budgetary constraints. More than ever, understanding the cost implications up front will be critical to success. Science performance can be translated into a set of simple performance metrics that set the requirements for design options. Cost is typically estimated by considering mass, complexity, technology maturity, and heritage. With this in mind, we survey the many diverse design considerations for a space telescope and, where appropriate, relate them to these basic performance metrics. In so doing, we hope to provide a roadmap for future space telescope designers on how best to optimize the design to maximize science and minimize total cost.


Proceedings of SPIE | 2006

Status of the JWST optical telescope element

Charlie Atkinson; Scott Texter; Ritva A. M. Keski-Kuha; Lee D. Feinberg

Significant progress has been made in the development of the Optical Telescope Element (OTE) for the James Webb Space Telescope (JWST) Observatory. All of the mirror assemblies are complete and delivered. The composite Primary Mirror Backplane Support Structure (PMBSS) has completed assembly and in Static Load testing. All the deployment mechanisms have completed their qualification programs. This paper will discuss the current status of all the OTE components and the plan forward to completion.


Proceedings of SPIE | 2015

Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

Matthew R. Bolcar; Kunjithapatham Balasubramanian; Mark Clampin; Julie A. Crooke; Lee D. Feinberg; Marc Postman; Manuel A. Quijada; Bernard J. Rauscher; David C. Redding; Norman Rioux; Stuart B. Shaklan; H. Philip Stahl; Carl Michael Stahle; Harley Thronson

The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) – thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

Collaboration


Dive into the Lee D. Feinberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew R. Bolcar

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Bruce H. Dean

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

H. Philip Stahl

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Babak Saif

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Marc Postman

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Harley Thronson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Howard

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Norman Rioux

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge