Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee E. Goldstein is active.

Publication


Featured researches published by Lee E. Goldstein.


Brain | 2013

The spectrum of disease in chronic traumatic encephalopathy

Ann C. McKee; Thor D. Stein; Christopher J. Nowinski; Robert A. Stern; Daniel H. Daneshvar; Victor E. Alvarez; H. J. Lee; Garth F. Hall; Sydney M. Wojtowicz; Christine M. Baugh; David O. Riley; Caroline A. Kubilus; Kerry Cormier; Matthew A. Jacobs; Brett Martin; Carmela R. Abraham; Tsuneya Ikezu; Robert Ross Reichard; Benjamin Wolozin; Andrew E. Budson; Lee E. Goldstein; Neil W. Kowall; Robert C. Cantu

Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I-IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I-III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimers disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.


Journal of Biological Chemistry | 1999

Cu(II) Potentiation of Alzheimer Aβ Neurotoxicity CORRELATION WITH CELL-FREE HYDROGEN PEROXIDE PRODUCTION AND METAL REDUCTION

Xudong Huang; Math P. Cuajungco; Craig S. Atwood; Mariana A. Hartshorn; Joel D. A. Tyndall; Graeme R. Hanson; Karen C. Stokes; Michael C. Leopold; Gerd Multhaup; Lee E. Goldstein; Richard C. Scarpa; Aleister J. Saunders; James T. Lim; Robert D. Moir; Charles G. Glabe; Edmond F. Bowden; Colin L. Masters; David P. Fairlie; Rudolph E. Tanzi; Ashley I. Bush

Oxidative stress markers as well as high concentrations of copper are found in the vicinity of Aβ amyloid deposits in Alzheimers disease. The neurotoxicity of Aβ in cell culture has been linked to H2O2generation by an unknown mechanism. We now report that Cu(II) markedly potentiates the neurotoxicity exhibited by Aβ in cell culture. The potentiation of toxicity is greatest for Aβ1–42 > Aβ1–40 ≫ mouse/rat Aβ1–40, corresponding to their relative capacities to reduce Cu(II) to Cu(I), form H2O2 in cell-free assays and to exhibit amyloid pathology. The copper complex of Aβ1–42 has a highly positive formal reduction potential (≈+500–550 mV versus Ag/AgCl) characteristic of strongly reducing cuproproteins. These findings suggest that certain redox active metal ions may be important in exacerbating and perhaps facilitating Aβ-mediated oxidative damage in Alzheimers disease.


Nature | 2015

Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy

Asami Kondo; Koorosh Shahpasand; Rebekah Mannix; Jianhua Qiu; Juliet A. Moncaster; Chun-Hau Chen; Yandan Yao; Yu-Min Lin; Jane A. Driver; Yan Sun; Shuo Wei; Manli Luo; Onder Albayram; Pengyu Huang; Alexander Rotenberg; Akihide Ryo; Lee E. Goldstein; Alvaro Pascual-Leone; Ann C. McKee; William P. Meehan; Xiao Zhen Zhou; Kun Ping Lu

Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy and Alzheimer’s disease, the defining pathologic features of which include tauopathy made of phosphorylated tau protein (P-tau). However, tauopathy has not been detected in the early stages after TBI, and how TBI leads to tauopathy is unknown. Here we find robust cis P-tau pathology after TBI in humans and mice. After TBI in mice and stress in vitro, neurons acutely produce cis P-tau, which disrupts axonal microtubule networks and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, which we term ‘cistauosis’, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis P-tau is a major early driver of disease after TBI and leads to tauopathy in chronic traumatic encephalopathy and Alzheimer’s disease. The cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimers disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.


JAMA | 2017

Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football

Jesse Mez; Daniel H. Daneshvar; Patrick T. Kiernan; Bobak Abdolmohammadi; Victor E. Alvarez; Bertrand R. Huber; Michael L. Alosco; Todd M. Solomon; Christopher J. Nowinski; Lisa McHale; Kerry Cormier; Caroline A. Kubilus; Brett M. Martin; Lauren Murphy; Christine M. Baugh; Phillip H. Montenigro; Christine E. Chaisson; Yorghos Tripodis; Neil W. Kowall; Jennifer Weuve; Michael D. McClean; Robert C. Cantu; Lee E. Goldstein; Douglas I. Katz; Robert A. Stern; Thor D. Stein; Ann C. McKee

Importance Players of American football may be at increased risk of long-term neurological conditions, particularly chronic traumatic encephalopathy (CTE). Objective To determine the neuropathological and clinical features of deceased football players with CTE. Design, Setting, and Participants Case series of 202 football players whose brains were donated for research. Neuropathological evaluations and retrospective telephone clinical assessments (including head trauma history) with informants were performed blinded. Online questionnaires ascertained athletic and military history. Exposures Participation in American football at any level of play. Main Outcomes and Measures Neuropathological diagnoses of neurodegenerative diseases, including CTE, based on defined diagnostic criteria; CTE neuropathological severity (stages I to IV or dichotomized into mild [stages I and II] and severe [stages III and IV]); informant-reported athletic history and, for players who died in 2014 or later, clinical presentation, including behavior, mood, and cognitive symptoms and dementia. Results Among 202 deceased former football players (median age at death, 66 years [interquartile range, 47-76 years]), CTE was neuropathologically diagnosed in 177 players (87%; median age at death, 67 years [interquartile range, 52-77 years]; mean years of football participation, 15.1 [SD, 5.2]), including 0 of 2 pre–high school, 3 of 14 high school (21%), 48 of 53 college (91%), 9 of 14 semiprofessional (64%), 7 of 8 Canadian Football League (88%), and 110 of 111 National Football League (99%) players. Neuropathological severity of CTE was distributed across the highest level of play, with all 3 former high school players having mild pathology and the majority of former college (27 [56%]), semiprofessional (5 [56%]), and professional (101 [86%]) players having severe pathology. Among 27 participants with mild CTE pathology, 26 (96%) had behavioral or mood symptoms or both, 23 (85%) had cognitive symptoms, and 9 (33%) had signs of dementia. Among 84 participants with severe CTE pathology, 75 (89%) had behavioral or mood symptoms or both, 80 (95%) had cognitive symptoms, and 71 (85%) had signs of dementia. Conclusions and Relevance In a convenience sample of deceased football players who donated their brains for research, a high proportion had neuropathological evidence of CTE, suggesting that CTE may be related to prior participation in football.


Journal of Biological Chemistry | 2011

Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice.

Marina V. Kasaikina; Dmitri E. Fomenko; Vyacheslav M. Labunskyy; Salil A. Lachke; Wenya Qiu; Juliet A. Moncaster; Jie Zhang; Mark Wojnarowicz; Sathish Kumar Natarajan; Mikalai Malinouski; Ulrich Schweizer; Petra A. Tsuji; Bradley A. Carlson; Richard L. Maas; Marjorie F. Lou; Lee E. Goldstein; Dolph L. Hatfield; Vadim N. Gladyshev

The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency.


PLOS ONE | 2011

Characterization of a Drosophila Alzheimer's Disease Model: Pharmacological Rescue of Cognitive Defects

Ranjita Chakraborty; Vidya Vepuri; Siddhita D. Mhatre; Brie E. Paddock; Sean Miller; Sarah J. Michelson; Radha Delvadia; Arkit Desai; Marianna Vinokur; David J. Melicharek; Suruchi Utreja; Preeti Khandelwal; Sara Ansaloni; Lee E. Goldstein; Robert D. Moir; Jeremy Lee; Loni Philip Tabb; Aleister J. Saunders; Daniel R. Marenda

Transgenic models of Alzheimers disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aβ40 and Aβ42, the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions.


PLOS ONE | 2012

δ-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes.

Gyungah Jun; Juliet A. Moncaster; Carolina Koutras; Sudha Seshadri; Jacqueline Buros; Ann C. McKee; Georges Lévesque; Philip A. Wolf; Peter St George-Hyslop; Lee E. Goldstein; Lindsay A. Farrer

Multiple lines of evidence suggest that specific subtypes of age-related cataract (ARC) and Alzheimer disease (AD) are related etiologically. To identify shared genetic factors for ARC and AD, we estimated co-heritability of quantitative measures of cataract subtypes with AD-related brain MRI traits among 1,249 members of the Framingham Eye Study who had a brain MRI scan approximately ten years after the eye exam. Cortical cataract (CC) was found to be co-heritable with future development of AD and with several MRI traits, especially temporal horn volume (THV, ρ = 0.24, P<10−4). A genome-wide association study using 187,657 single nucleotide polymorphisms (SNPs) for the bivariate outcome of CC and THV identified genome-wide significant association with CTNND2 SNPs rs17183619, rs13155993 and rs13170756 (P<2.6×10−7). These SNPs were also significantly associated with bivariate outcomes of CC and scores on several highly heritable neuropsychological tests (5.7×10−9≤P<3.7×10−6). Statistical interaction was demonstrated between rs17183619 and APP SNP rs2096488 on CC (P = 0.0015) and CC-THV (P = 0.038). A rare CTNND2 missense mutation (G810R) 249 base pairs from rs17183619 altered δ-catenin localization and increased secreted amyloid-β1–42 in neuronal cell culture. Immunohistopathological analysis of lens tissue obtained from two autopsy-confirmed AD subjects and two non-AD controls revealed elevated expression of δ-catenin in epithelial and cortical regions of lenses from AD subjects compared to controls. Our findings suggest that genetic variation in delta catenin may underlie both cortical lens opacities in mid-life and subsequent MRI and cognitive changes that presage the development of AD.


Alzheimer's Research & Therapy | 2014

Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy

Lee E. Goldstein; Ann C. McKee; Patric K. Stanton

The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms, neuropathological features, and neurological sequelae observed in the corresponding human disorder. Understanding the purpose of an animal model and the criteria by which experimental results derived from the model are validated are critical components for useful animal modeling. Animal models that reliably demonstrate clinically relevant endpoints will expedite development of new treatments, diagnostics, preventive measures, and rehabilitative strategies for individuals affected by blast TBI and its aftermath.


Brain | 2018

Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model

Chad Tagge; Andrew Fisher; Olga Minaeva; Amanda Gaudreau-Balderrama; Juliet A. Moncaster; Xiao-lei Zhang; Mark Wojnarowicz; Noel Casey; Haiyan Lu; Olga N. Kokiko-Cochran; Sudad Saman; Maria Ericsson; Kristen D. Onos; Ronel Veksler; Vladimir V. Senatorov; Asami Kondo; Xiao Z. Zhou; Omid Miry; Linnea R. Vose; Katisha Gopaul; Chirag Upreti; Christopher J. Nowinski; Robert C. Cantu; Victor E. Alvarez; Audrey M. Hildebrandt; Erich S. Franz; Janusz Konrad; James Hamilton; Ning Hua; Yorghos Tripodis

The mechanisms underpinning concussion, traumatic brain injury (TBI) and chronic traumatic encephalopathy (CTE) are poorly understood. Using neuropathological analyses of brains from teenage athletes, a new mouse model of concussive impact injury, and computational simulations, Tagge et al. show that head injuries can induce TBI and early CTE pathologies independent of concussion.


Science Translational Medicine | 2012

Response to comment on "chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model"

Lee E. Goldstein; Ann C. McKee

Goldstein and McKee respond to points raised in two letters about their study of tau neuropathology in postmortem brain tissue samples from blast-exposed military veterans with traumatic brain injury. None Goldstein and McKee respond to points raised in two letters about their study of tau neuropathology in postmortem brain tissue samples from blast-exposed military veterans with traumatic brain injury.

Collaboration


Dive into the Lee E. Goldstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Hunter

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge