Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee E. Schechter is active.

Publication


Featured researches published by Lee E. Schechter.


Neuron | 1996

βSubunits Promote K+ Channel Surface Expression through Effects Early in Biosynthesis

Gongyi Shi; Kensuke Nakahira; Scott M. Hammond; Kenneth J. Rhodes; Lee E. Schechter; James S. Trimmer

Voltage-gated K+ channels are protein complexes composed of ion-conducting integral membrane alpha subunits and cytoplasmic beta subunits. Here, we show that, in transfected mammalian cells, the predominant beta subunit isoform in brain, Kv beta 2, associates with the Kv1.2 alpha subunit early in channel biosynthesis and that Kv beta 2 exerts multiple chaperone-like effects on associated Kv1.2 including promotion of cotranslational N-linked glycosylation of the nascent Kv1.2 polypeptide, increased stability of Kv beta 2/Kv1.2 complexes, and increased efficiency of cell surface expression of Kv1.2. Taken together, these results indicate that while some cytoplasmic K+ channel beta subunits affect the inactivation kinetics of alpha subunits, a more general, and perhaps more fundamental, role is to mediate the biosynthetic maturation and surface expression of voltage-gated K+ channel complexes. These findings provide a molecular basis for recent genetic studies indicating that beta subunits are key determinants of neuronal excitability.


Neurorx | 2005

Innovative Approaches for the Development of Antidepressant Drugs: Current and Future Strategies

Lee E. Schechter; Robert H. Ring; Chad E. Beyer; Zoë A. Hughes; Xavier Khawaja; Jessica E. Malberg; Sharon Rosenzweig-Lipson

SummaryDepression is a highly debilitating disorder that has been estimated to affect up to 21% of the world population. Despite the advances in the treatment of depression with selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), there continue to be many unmet clinical needs with respect to both efficacy and side effects. These needs range from efficacy in treatment resistant patients, to improved onset, to reductions in side effects such as emesis or sexual dysfunction. To address these needs, there are numerous combination therapies and novel targets that have been identified that may demonstrate improvements in one or more areas. There is tremendous diversity in the types of targets and approaches being taken. At one end of a spectrum is combination therapies that maintain the benefits associated with SSRIs but attempt to either improve efficacy or reduce side effects by adding additional mechanisms (5-HT1A, 5-HT1B, 5-HT1D, 5-HT2C, α-2A). At the other end of the spectrum are more novel targets, such as neurotrophins (BDNF, IGF), based on recent findings that antidepressants induce neurogenesis. In between, there are many approaches that range from directly targeting serotonin receptors (5-HT2C, 5-HT6) to targeting the multiplicity of potential mechanisms associated with excitatory (glutamate, NMDA, mGluR2, mGluR5) or inhibitory amino acid systems (GABA) or peptidergic systems (neurokinin 1, corticotropin-releasing factor 1, melanin-concentrating hormone 1, V1b). The present review addresses the most exciting approaches and reviews the localization, neurochemical and behavioral data that provide the supporting rationale for each of these targets or target combinations.


Psychoneuroendocrinology | 2008

From menarche to menopause: Exploring the underlying biology of depression in women experiencing hormonal changes

Darlene C. Deecher; Terrance H. Andree; Diane Sloan; Lee E. Schechter

Epidemiologic data consistently report an elevated prevalence of major depressive disorder (MDD) in women. This increase begins during adolescence and continues through the menopausal transition. Population-based clinical studies report an increase in the incidence of MDD during perimenopause compared to either the premenopausal or postmenopausal period. Evidence suggests that fluctuations and decline of hormonal levels are correlated with this observed increase in risk for MDD. A strong predictor of depression in the perimenopausal period is a previous history of MDD. However, recent studies revealed an increased risk of new onset depression in perimenopausal women without a history of MDD. Additionally, recent reports have indicated that the presence of vasomotor symptoms may be associated with an increased the risk for MDD. The objective of this paper is to review evidence that would support our hypothesis that neurotransmitter systems are affected by changes in hormonal status over the course of a womans life, leading to increase vulnerability to perimenopausal depression. Relevant data from nonclinical experiments will be discussed in the context of observed clinical evidence of the risk for MDD before, during, and after the menopausal transition. A testable hypothesis will be proposed to advance our understanding of hormonal effects on mood.


Neuropsychopharmacology | 2008

Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466.

Lee E. Schechter; Qian Lin; Deborah L. Smith; Guoming Zhang; Qin Shan; Brian Platt; Michael R. Brandt; Lee A. Dawson; Derek Cecil Cole; Ron Bernotas; Albert Jean Robichaud; Sharon Rosenzweig-Lipson; Chad E. Beyer

One of the most recently identified serotonin (5-hydroxytryptamine (5-HT)) receptor subtypes is the 5-HT6 receptor. Although in-depth localization studies reveal an exclusive distribution of 5-HT6 mRNA in the central nervous system, the precise biological role of this receptor still remains unknown. In the present series of experiments, we report the pharmacological and neurochemical characterization of two novel and selective 5-HT6 receptor agonists. WAY-181187 and WAY-208466 possess high affinity binding (2.2 and 4.8 nM, respectively) at the human 5-HT6 receptor and profile as full receptor agonists (WAY-181187: EC50=6.6 nM, Emax=93%; WAY-208466: EC50=7.3 nM; Emax=100%). In the rat frontal cortex, acute administration of WAY-181187 (3–30 mg/kg, subcutaneous (s.c.)) significantly increased extracellular GABA concentrations without altering the levels of glutamate or norepinephrine. Additionally, WAY-181187 (30 mg/kg, s.c.) produced modest yet significant decreases in cortical dopamine and 5-HT levels. Subsequent studies showed that the neurochemical effects of WAY-181187 in the frontal cortex could be blocked by pretreatment with the 5-HT6 antagonist, SB-271046 (10 mg/kg, s.c.), implicating 5-HT6 receptor mechanisms in mediating these responses. Moreover, the effects of WAY-181187 on catecholamines were attenuated by an intracortical infusion of the GABAA receptor antagonist, bicuculline (10 μM), confirming a local relationship between 5-HT6 receptors and GABAergic systems in the frontal cortex. In the dorsal hippocampus, striatum, and amygdala, WAY-181187 (10–30 mg/kg, s.c.) elicited robust elevations in extracellular levels of GABA without producing similar effects on concentrations of norepinephrine, serotonin, dopamine, or glutamate. In contrast to these brain regions, WAY-181187 had no effect on the extracellular levels of GABA in the nucleus accumbens or thalamus. Additional studies showed that WAY-208466 (10 mg/kg, s.c.) preferentially elevated cortical GABA levels following both acute and chronic (14 day) administration, indicating that neurochemical tolerance does not develop following repeated 5-HT6 receptor stimulation. In hippocampal slice preparations (in vitro), 5-HT6 receptor agonism attenuated stimulated glutamate levels elicited by sodium azide and high KCl treatment. Furthermore, in the rat schedule-induced polydipsia model of obsessive compulsive disorder (OCD), acute administration of WAY-181187 (56–178 mg/kg, po) decreased adjunctive drinking behavior in a dose-dependent manner. In summary, WAY-181187 and WAY-208466 are novel, selective, and potent 5-HT6 receptor agonists displaying a unique neurochemical signature in vivo. Moreover, these data highlight a previously undescribed role for 5-HT6 receptors to modulate basal GABA and stimulated glutamate transmission, as well as reveal a potential therapeutic role for this receptor in the treatment of some types of anxiety-related disorders (eg OCD).


Brain Research | 2008

Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments.

Darrick T. Balu; Brian A. Hoshaw; Jessica E. Malberg; Sharon Rosenzweig-Lipson; Lee E. Schechter; Irwin Lucki

Antidepressant treatments have been proposed to produce their therapeutic effects, in part, through increasing neurotrophin levels in the brain. The current experiments investigated the effects of acute and chronic treatment with different pharmacologic and somatic antidepressant treatments on protein levels of BDNF in several brain regions associated with depression in the rat. Repeated applications (10 days) of electroconvulsive shock (ECS), but not a single treatment (1 day), produced 40-100% increases of BDNF protein in the hippocampus, frontal cortex, amygdala, and brainstem. Chronic (21 days), but not acute (1 day), treatment with the tricyclic antidepressant (TCA) desipramine (10 mg/kg), the selective serotonin reuptake inhibitor (SSRI) fluoxetine (10 mg/kg), and the monoamine oxidase inhibitor (MAOI) phenelzine (10 mg/kg) increased BDNF protein levels in the frontal cortex (10-30%), but not in the hippocampus, amygdala, olfactory bulb, and brain stem. To determine whether the regulation of BDNF was unique to antidepressant treatments, drugs used to treat schizophrenia and anxiety were also studied. Chronic administration of the typical antipsychotic haloperidol (1 mg/kg) and the atypical antipsychotic clozapine (20 mg/kg) increased BDNF levels by only 8-10% in the frontal cortex. Haloperidol also elevated BDNF levels in the amygdala, while clozapine decreased BDNF in the olfactory bulb. Acute or chronic treatment with the benzodiazepine chlordiazepoxide (10 mg/kg) did not alter BDNF levels. These results suggest that diverse pharmacologic and somatic antidepressant treatments, as well as antipsychotics, increase levels of BDNF protein in the frontal cortex, even though they have different mechanisms of action at neurotransmitter systems.


Current Pharmaceutical Design | 2005

Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs.

Jessica E. Malberg; Lee E. Schechter

The birth of new neurons, or neurogenesis, in the hippocampal formation has been demonstrated throughout the lifetime of multiple species including humans. A major finding in the field of depression is that treatment with antidepressant drugs increases hippocampal neurogenesis. This review presents a current summary of this field of study and presents the hypothesis that increasing adult hippocampal neurogenesis may be a new drug target or mechanism for future antidepressant drugs. It has been demonstrated that multiple classes of antidepressant drugs increase hippocampal cell proliferation and neurogenesis in a chronic and not acute time course, which corresponds to the therapeutic time course necessary for effects. Conversely, animal models of depression or stress paradigms decrease cell proliferation. Clinically, there is evidence of reduced hippocampal volume in patients with major depressive disorder or other affective disorders. Taken together, this data indicates that reduced hippocampal cell number may be involved in the pathophysiology of depression and reversal of this may be one way the antidepressant drugs exert their effects. We hypothesize that the next generation of antidepressant drugs will, in addition to their effects on known transmitter or second messenger systems, involve either direct or indirect targeting of neurogenic factors. In addition, the ability of novel compounds to be tested for the neurogenic potential may become an additional way to evaluate a compound for putative antidepressant effects.


Neuropharmacology | 2010

Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist.

Robert H. Ring; Lee E. Schechter; Sarah K. Leonard; Jason M. Dwyer; Brian Platt; Radka Graf; Steven M. Grauer; Claudine Pulicicchio; Lynn Resnick; Zia Rahman; Stacey J. Sukoff Rizzo; Bin Luo; Chad E. Beyer; Sheree F. Logue; Karen L. Marquis; Zoë A. Hughes; Sharon Rosenzweig-Lipson

The widely reported effects of oxytocin (OT) on CNS function has generated considerable interest in the therapeutic potential for targeting this system for a variety of human psychiatric diseases, including anxiety disorders, autism, schizophrenia, and depression. The utility of synthetic OT, as both a research tool and neurotherapeutic, is limited by the physiochemical properties inherent in most neuropeptides, notably its short half-life and poor blood brain barrier penetration. Subsequently, the discovery and development of non-peptide molecules that act as selective agonists of the oxytocin receptor (OTR) has been an important goal of the field. In this study, we report the receptor and behavioral pharmacology of WAY-267464, a first generation small-molecule OTR agonist. WAY-267464 is a high-affinity, potent, and selective (vs. V1a, V2, V1b) agonist of the OTR. In assays measuring both behavioral (four-plate test, elevated zero maze) and autonomic (stress-induced hyperthermia) parameters of the anxiety response, WAY-267464 exhibits an anxiolytic-like profile similar to OT. We have demonstrated that the anxiolytic-like profile of WAY-267464 is mediated through central sites of action. WAY-267464 also significantly reverses disruption in prepulse inhibition of the acoustic startle reflex induced by either MK-801 or amphetamine, similar to the antipsychotic-like effects previously reported for OT. Interestingly, in the mouse tail suspension test, WAY-267464 failed to produce changes in immobility that are seen with OT, raising the question of whether the antidepressant-like activity of OT may be working independently of the OTR. A selective OTR antagonist also failed to block the effects of OT on immobility in the TST. The significance of these findings for shaping the clinical development of OTR agonists is discussed.


Current Pharmaceutical Design | 2002

The potential utility of 5-HT1A receptor antagonists in the treatment of cognitive dysfunction associated with Alzheimer s disease.

Lee E. Schechter; Lee A. Dawson; Josie A. Harder

The 5-HT1A receptor has been extensively studied over the last two decades. There is a plethora of information describing its anatomical, physiological and biochemical roles in the brain. In addition, the development of selective pharmacological tools coupled with our understanding of psychiatric pathology has lead to multiple hypotheses for the therapeutic utility of 5-HT1A agents and in particular 5-HT1A receptor antagonists. Over the last decade it has been suggested that 5-HT1A receptor antagonists may have therapeutic utility in such diseases as depression, anxiety, drug and nicotine withdrawal as well as schizophrenia. However, a very compelling rationale has been developed for the therapeutic potential of 5-HT1A receptor antagonists in Alzheimer s disease and potentially other diseases with associated cognitive dysfunction. Receptor blockade by a 5-HT1A receptor antagonist appears to enhance activation and signaling through heterosynaptic neuronal circuits known to be involved in cognitive processes and, as such, represents a novel therapeutic approach to the treatment of cognitive deficits associated with Alzheimer s disease and potentially other disorders with underlying cognitive dysfunction.


Neuropsychopharmacology | 2007

Increasing the Levels of Insulin-Like Growth Factor-I by an IGF Binding Protein Inhibitor Produces Anxiolytic and Antidepressant-Like Effects

Jessica Malberg; Brian Platt; Stacey J. Sukoff Rizzo; Robert H. Ring; Irwin Lucki; Lee E. Schechter; Sharon Rosenzweig-Lipson

The present studies were conducted to determine if increasing central levels of the neurotrophic factor insulin-like growth factor-1 (IGF-I) either directly or indirectly produces anxiolytic and antidepressant-like effects in the mouse. Central levels of IGF-I can be increased directly, by administering IGF-I, or indirectly by blocking the insulin-like growth factor binding proteins (IGFBPs). The IGFBP family has the unique ability to regulate IGF-I levels by sequestering IGF-I into an inactive complex. Therefore, an IGFBP inhibitor increases the level of IGF-I available to bind to its receptor. Intracerebroventricular (icv) administration of the nonspecific IGFBP inhibitor NBI-31772 (10–30 μg) increases the number of punished crossings in the four-plate test and NBI-31772 (0.3–10 μg) increases time spent in the open quadrant of the elevated zero maze (EZM), indicative of anxiolytic-like effects. NBI-31772 (3–30 μg) also decreases immobility time in the tail suspension test, indicative of antidepressant-like effects. Similarly, icv administration of IGF-I (0.1 μg) produces anxiolytic-like effects in the four-plate test and IGF-1 (0.3–1 μg) produces anxiolytic-like effects in the EZM. IGF-I (10 μg) also produces antidepressant-like effects in the tail suspension test. Coadministration of the IGF-I receptor antagonist JB1 with NBI-31772 or IGF-I blocks the anxiolytic-like and antidepressant-like effects of these compounds. These results suggest that NBI-31772 produces behavioral effects by increasing levels of IGF-I that in turn activate the IGF-I receptor. The present studies demonstrate that an IGFBP inhibitor mimics the behavioral effects of IGF-I and that IGFBP inhibition may represent a novel mechanism by which to increase IGF-I to treat depression and anxiety.


British Journal of Pharmacology | 2000

Effects of chronic fluoxetine treatment in the presence and absence of (±)pindolol: a microdialysis study

Lee A. Dawson; H Q Nguyen; D I Smith; Lee E. Schechter

Using in vivo microdialysis in the frontal cortex of the freely moving rat we evaluated the effects of chronic treatment with the serotonin specific reuptake inhibitor (SSRI) fluoxetine in the presence and absence of the 5‐HT1A/β‐adrenergic antagonist (±)pindolol. Chronic vehicle treated animals produced no significant response to a challenge with fluoxetine (10 mg kg−1) on day 8 and 15. Alternatively, a significant (P<0.05) decrease in extracellular 5‐HT was observed in control animals upon challenge with the 5‐HT1A agonist 8‐hydroxy‐2‐(di‐n‐propylamino)tetralin (8‐OH‐DPAT; 0.03 and 0.1 mg kg−1). Conversely, animals treated with fluoxetine (10 mg kg−1 o.d.) for 7 and 14 days produced a significant (P<0.05) 2 fold increase in extracellular 5‐HT when challenged with fluoxetine (10 mg kg−1) on day 8 and 15. Moreover, no significant decrease in extracellular 5‐HT was observed upon challenge with either dose of 8‐OH‐DPAT. Animals chronically treated with (±)pindolol (10 or 20 mg kg−1 b.i.d.) produced a significant dose‐related increase in extracellular 5‐HT upon challenge with fluoxetine on day 15 only. Furthermore, both doses produced a significantly blunted response to the low dose challenge of 8‐OH‐DPAT (0.03 mg kg−1). In addition, 20 mg kg−1 (±)pindolol treated animals also had no response to the higher 0.1 mg kg−1 dose of 8‐OH‐DPAT. Animals treated for 14 days with a combination of (±)pindolol (10 or 20 mg kg−1) and fluoxetine were not significantly different from vehicle treated animals when challenged with fluoxetine or 8‐OH‐DPAT. Taken together it would therefore appear that although (±)pindolol alone has sufficient intrinsic activity to produce a desensitization of the 5‐HT1A receptor, when given in combination with fluoxetine it is able to prevent the desensitization induced by not only fluoxetine but also itself. This may suggest that the clinical augmentation of antidepressant action by pindolol, when co‐administered with a SSRI, is via antagonism of the 5‐HT1A receptor.

Collaboration


Dive into the Lee E. Schechter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian Lin

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge