Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Platt is active.

Publication


Featured researches published by Brian Platt.


Neuropsychopharmacology | 2008

Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466.

Lee E. Schechter; Qian Lin; Deborah L. Smith; Guoming Zhang; Qin Shan; Brian Platt; Michael R. Brandt; Lee A. Dawson; Derek Cecil Cole; Ron Bernotas; Albert Jean Robichaud; Sharon Rosenzweig-Lipson; Chad E. Beyer

One of the most recently identified serotonin (5-hydroxytryptamine (5-HT)) receptor subtypes is the 5-HT6 receptor. Although in-depth localization studies reveal an exclusive distribution of 5-HT6 mRNA in the central nervous system, the precise biological role of this receptor still remains unknown. In the present series of experiments, we report the pharmacological and neurochemical characterization of two novel and selective 5-HT6 receptor agonists. WAY-181187 and WAY-208466 possess high affinity binding (2.2 and 4.8 nM, respectively) at the human 5-HT6 receptor and profile as full receptor agonists (WAY-181187: EC50=6.6 nM, Emax=93%; WAY-208466: EC50=7.3 nM; Emax=100%). In the rat frontal cortex, acute administration of WAY-181187 (3–30 mg/kg, subcutaneous (s.c.)) significantly increased extracellular GABA concentrations without altering the levels of glutamate or norepinephrine. Additionally, WAY-181187 (30 mg/kg, s.c.) produced modest yet significant decreases in cortical dopamine and 5-HT levels. Subsequent studies showed that the neurochemical effects of WAY-181187 in the frontal cortex could be blocked by pretreatment with the 5-HT6 antagonist, SB-271046 (10 mg/kg, s.c.), implicating 5-HT6 receptor mechanisms in mediating these responses. Moreover, the effects of WAY-181187 on catecholamines were attenuated by an intracortical infusion of the GABAA receptor antagonist, bicuculline (10 μM), confirming a local relationship between 5-HT6 receptors and GABAergic systems in the frontal cortex. In the dorsal hippocampus, striatum, and amygdala, WAY-181187 (10–30 mg/kg, s.c.) elicited robust elevations in extracellular levels of GABA without producing similar effects on concentrations of norepinephrine, serotonin, dopamine, or glutamate. In contrast to these brain regions, WAY-181187 had no effect on the extracellular levels of GABA in the nucleus accumbens or thalamus. Additional studies showed that WAY-208466 (10 mg/kg, s.c.) preferentially elevated cortical GABA levels following both acute and chronic (14 day) administration, indicating that neurochemical tolerance does not develop following repeated 5-HT6 receptor stimulation. In hippocampal slice preparations (in vitro), 5-HT6 receptor agonism attenuated stimulated glutamate levels elicited by sodium azide and high KCl treatment. Furthermore, in the rat schedule-induced polydipsia model of obsessive compulsive disorder (OCD), acute administration of WAY-181187 (56–178 mg/kg, po) decreased adjunctive drinking behavior in a dose-dependent manner. In summary, WAY-181187 and WAY-208466 are novel, selective, and potent 5-HT6 receptor agonists displaying a unique neurochemical signature in vivo. Moreover, these data highlight a previously undescribed role for 5-HT6 receptors to modulate basal GABA and stimulated glutamate transmission, as well as reveal a potential therapeutic role for this receptor in the treatment of some types of anxiety-related disorders (eg OCD).


Neuropharmacology | 2010

Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist.

Robert H. Ring; Lee E. Schechter; Sarah K. Leonard; Jason M. Dwyer; Brian Platt; Radka Graf; Steven M. Grauer; Claudine Pulicicchio; Lynn Resnick; Zia Rahman; Stacey J. Sukoff Rizzo; Bin Luo; Chad E. Beyer; Sheree F. Logue; Karen L. Marquis; Zoë A. Hughes; Sharon Rosenzweig-Lipson

The widely reported effects of oxytocin (OT) on CNS function has generated considerable interest in the therapeutic potential for targeting this system for a variety of human psychiatric diseases, including anxiety disorders, autism, schizophrenia, and depression. The utility of synthetic OT, as both a research tool and neurotherapeutic, is limited by the physiochemical properties inherent in most neuropeptides, notably its short half-life and poor blood brain barrier penetration. Subsequently, the discovery and development of non-peptide molecules that act as selective agonists of the oxytocin receptor (OTR) has been an important goal of the field. In this study, we report the receptor and behavioral pharmacology of WAY-267464, a first generation small-molecule OTR agonist. WAY-267464 is a high-affinity, potent, and selective (vs. V1a, V2, V1b) agonist of the OTR. In assays measuring both behavioral (four-plate test, elevated zero maze) and autonomic (stress-induced hyperthermia) parameters of the anxiety response, WAY-267464 exhibits an anxiolytic-like profile similar to OT. We have demonstrated that the anxiolytic-like profile of WAY-267464 is mediated through central sites of action. WAY-267464 also significantly reverses disruption in prepulse inhibition of the acoustic startle reflex induced by either MK-801 or amphetamine, similar to the antipsychotic-like effects previously reported for OT. Interestingly, in the mouse tail suspension test, WAY-267464 failed to produce changes in immobility that are seen with OT, raising the question of whether the antidepressant-like activity of OT may be working independently of the OTR. A selective OTR antagonist also failed to block the effects of OT on immobility in the TST. The significance of these findings for shaping the clinical development of OTR agonists is discussed.


Neurobiology of Disease | 2010

Depression-like phenotype following chronic CB1 receptor antagonism

Chad E. Beyer; Jason M. Dwyer; Michael J. Piesla; Brian Platt; Ru Shen; Zia Rahman; Karen Chan; Melissa T. Manners; Tarek A. Samad; Jeffrey D. Kennedy; Brendan Bingham; Garth T. Whiteside

Rimonabant was the first clinically marketed cannabinoid (CB)(1) receptor antagonist developed to treat obesity. Unfortunately, CB(1) receptor antagonism produced adverse psychiatric events in patients. To determine whether this occurs pre-clinically, we investigated the effects of rimonabant in rodent models of mood disorders. Chronic treatment with rimonabant increased immobility time in the rat forced swim test and reduced the consumption of sucrose-sweetened water in an assay postulated to model anhedonia. These responses were similar to the effects elicited by chronic mild stress in these behavioral models, which, taken together, are indicative of a depression-like phenotype. Additionally, chronic treatment with rimonabant produced decreases in frontal cortex serotonin levels, marked reductions in hippocampal cell proliferation, survival, and BDNF levels, and elevations in the concentrations of pro-inflammatory cytokines including interferon gamma and TNF alpha. These preclinical findings mimic clinical reports and implicate possible mechanisms responsible for the unfavorable psychiatric events reported following chronic rimonabant use.


Neuropsychopharmacology | 2007

Increasing the Levels of Insulin-Like Growth Factor-I by an IGF Binding Protein Inhibitor Produces Anxiolytic and Antidepressant-Like Effects

Jessica Malberg; Brian Platt; Stacey J. Sukoff Rizzo; Robert H. Ring; Irwin Lucki; Lee E. Schechter; Sharon Rosenzweig-Lipson

The present studies were conducted to determine if increasing central levels of the neurotrophic factor insulin-like growth factor-1 (IGF-I) either directly or indirectly produces anxiolytic and antidepressant-like effects in the mouse. Central levels of IGF-I can be increased directly, by administering IGF-I, or indirectly by blocking the insulin-like growth factor binding proteins (IGFBPs). The IGFBP family has the unique ability to regulate IGF-I levels by sequestering IGF-I into an inactive complex. Therefore, an IGFBP inhibitor increases the level of IGF-I available to bind to its receptor. Intracerebroventricular (icv) administration of the nonspecific IGFBP inhibitor NBI-31772 (10–30 μg) increases the number of punished crossings in the four-plate test and NBI-31772 (0.3–10 μg) increases time spent in the open quadrant of the elevated zero maze (EZM), indicative of anxiolytic-like effects. NBI-31772 (3–30 μg) also decreases immobility time in the tail suspension test, indicative of antidepressant-like effects. Similarly, icv administration of IGF-I (0.1 μg) produces anxiolytic-like effects in the four-plate test and IGF-1 (0.3–1 μg) produces anxiolytic-like effects in the EZM. IGF-I (10 μg) also produces antidepressant-like effects in the tail suspension test. Coadministration of the IGF-I receptor antagonist JB1 with NBI-31772 or IGF-I blocks the anxiolytic-like and antidepressant-like effects of these compounds. These results suggest that NBI-31772 produces behavioral effects by increasing levels of IGF-I that in turn activate the IGF-I receptor. The present studies demonstrate that an IGFBP inhibitor mimics the behavioral effects of IGF-I and that IGFBP inhibition may represent a novel mechanism by which to increase IGF-I to treat depression and anxiety.


Journal of Pharmacology and Experimental Therapeutics | 2011

The Metabotropic Glutamate Receptor 7 Allosteric Modulator AMN082: A Monoaminergic Agent in Disguise?

Stacey J. Sukoff Rizzo; Sarah K. Leonard; Adam M. Gilbert; Paul Jeffrey Dollings; Deborah L. Smith; Mei-Yi Zhang; Li Di; Brian Platt; Sarah Neal; Jason M. Dwyer; Corey N. Bender; Jean Zhang; Tim Lock; Dianne Kowal; Angela Kramer; Andrew D. Randall; Christine Huselton; Karthick Vishwanathan; Susanna Y. Tse; John A. Butera; Robert H. Ring; Sharon Rosenzweig-Lipson; Zoë A. Hughes; John Dunlop

Metabotropic glutamate receptor 7 (mGluR7) remains the most elusive of the eight known mGluRs primarily because of the limited availability of tool compounds to interrogate its potential therapeutic utility. The discovery of N,N′-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) as the first orally active, brain-penetrable, mGluR7-selective allosteric agonist by Mitsukawa and colleagues (Proc Natl Acad Sci USA 102:18712–18717, 2005) provides a means to investigate this receptor system directly. AMN082 demonstrates mGluR7 agonist activity in vitro and interestingly has a behavioral profile that supports utility across a broad spectrum of psychiatric disorders including anxiety and depression. The present studies were conducted to extend the in vitro and in vivo characterization of AMN082 by evaluating its pharmacokinetic and metabolite profile. Profiling of AMN082 in rat liver microsomes revealed rapid metabolism (t1/2 < 1 min) to a major metabolite, N-benzhydrylethane-1,2-diamine (Met-1). In vitro selectivity profiling of Met-1 demonstrated physiologically relevant transporter binding affinity at serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET) (323, 3020, and 3410 nM, respectively); whereas the parent compound AMN082 had appreciable affinity at NET (1385 nM). AMN082 produced antidepressant-like activity and receptor occupancy at SERT up to 4 h postdose, a time point at which AMN082 is significantly reduced in brain and plasma while the concentration of Met-1 continues to increase in brain. Acute Met-1 administration produced antidepressant-like activity as would be expected from its in vitro profile as a mixed SERT, NET, DAT inhibitor. Taken together, these data suggest that the reported in vivo actions of AMN082 should be interpreted with caution, because they may involve other mechanisms in addition to mGluR7.


Neuropharmacology | 2008

WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent

Zoë A. Hughes; Feng Liu; Brian Platt; Jason M. Dwyer; Claudine Pulicicchio; Guoming Zhang; Lee E. Schechter; Sharon Rosenzweig-Lipson; Mark Day

Recent studies have reported that estrogen has antidepressant-like effects in animal models. In this study we used the highly selective ER beta agonist, WAY-200070, to examine the role of ER beta activation on brain neurochemistry and activity in antidepressant and anxiolytic models in male mice. Within 15 min of administration, WAY-200070 (30 mg/kg s.c.) caused the nuclear translocation of striatal ER beta receptors from the cytosol. WAY-200070 also increased c-fos activation 4h, but not 15 min after administration. Both nuclear translocation and c-fos induction effects of WAY-200070 demonstrate that WAY-200070 has bound to estrogen receptors and triggered downstream events. The absence of these effects in the ER beta KO mice confirms that WAY-200070 was targeting ER beta. Administration of WAY-200070 (30 mg/kg s.c.) produced a delayed approximately 50% increase in dopamine in the striatum of wild type mice. The effect was significant and maintained from 90 to 240 min. This increase was absent in ER beta KO mice. In wild type mice, WAY-200070 (30 mg/kg s.c.) also produced a delayed and transient approximately 100% increase in 5-HT. To further investigate the role of ER beta receptors on serotonergic function, 5-HTP accumulation was measured. ER beta KO mice were found to have reduced frontal cortex levels of 5-HTP, indicating reduced tryptophan hydroxylase activity. WAY-200070 (3-30 mg/kg s.c.) was also tested in behavioural models. WAY-200070 (30 mg/kg s.c.) reduced immobility time in the mouse tail suspension test indicating an antidepressant-like effect. WAY-200070 (30 mg/kg) showed anxiolytic-like effects in the four-plate test (increased punished crossings) and stress-induced hyperthermia (attenuation of hyperthermic response). The effects of the selective ER beta agonist, WAY-200070, on dopamine and serotonin, the anxiolytic-like and antidepressant-like effects as well as the genotype specific effects on neurochemistry support that positive modulation of ER beta function may provide a novel treatment for affective disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes

Michele P. Kelly; Sheree F. Logue; Jonathon P. Day; Subha Lakkaraju; Lixin Jiang; Xiaotian Zhong; May Tam; Stacey J. Sukoff Rizzo; Brian Platt; Jason M. Dwyer; Sarah Neal; Virginia L. Pulito; Michael J. Agostino; Steven M. Grauer; Rachel Navarra; Cody Kelley; Thomas A. Comery; Richard J. Murrills; Miles D. Houslay; Nicholas J. Brandon

Phosphodiesterase 11A (PDE11A) is the most recently identified family of phosphodiesterases (PDEs), the only known enzymes to break down cyclic nucleotides. The tissue expression profile of this dual specificity PDE is controversial, and little is understood of its biological function, particularly in the brain. We seek here to determine if PDE11A is expressed in the brain and to understand its function, using PDE11A−/− knockout (KO) mice. We show that PDE11A mRNA and protein are largely restricted to hippocampus CA1, subiculum, and the amygdalohippocampal area, with a two- to threefold enrichment in the ventral vs. dorsal hippocampus, equal distribution between cytosolic and membrane fractions, and increasing levels of protein expression from postnatal day 7 through adulthood. Interestingly, PDE11A KO mice show subtle psychiatric-disease–related deficits, including hyperactivity in an open field, increased sensitivity to the glutamate N-methyl-D-aspartate receptor antagonist MK-801, as well as deficits in social behaviors (social odor recognition memory and social avoidance). In addition, PDE11A KO mice show enlarged lateral ventricles and increased activity in CA1 (as per increased Arc mRNA), phenotypes associated with psychiatric disease. The increased sensitivity to MK-801 exhibited by PDE11A KO mice may be explained by the biochemical dysregulation observed around the glutamate α-amino-3-hydroxy-5-methyl-4-isozazolepropionic (AMPA) receptor, including decreased levels of phosphorylated-GluR1 at Ser845 and the prototypical transmembrane AMPA-receptor–associated proteins stargazin (γ2) and γ8. Together, our data provide convincing evidence that PDE11A expression is restricted in the brain but plays a significant role in regulating brain function.


Neuropeptides | 2007

Anxiolytic-like activity of the non-selective galanin receptor agonist, galnon

S. Johannes R. Rajarao; Brian Platt; Stacey J. Sukoff; Qian Lin; Corey N. Bender; Bart W. Nieuwenhuijsen; Robert H. Ring; Lee E. Schechter; Sharon Rosenzweig-Lipson; Chad E. Beyer

Galanins influence on monoaminergic neurotransmission, together with its discrete CNS distribution in corticolimbic brain areas, points to a potential role for this neuropeptide in mediating anxiety- and depression-like responses. To evaluate this hypothesis, the non-selective galanin receptor agonist, galnon, was tested in multiple preclinical models of anxiolytic- and antidepressive-like activity. Acute administration of galnon (0.03-1mg/kg, i.p.) dose-dependently increased punished crossings in the four plate test, with magnitude similar to the effects of the endogenous ligand, galanin (0.1-1.0 microg, i.c.v.). Moreover, the effects of galnon and galanin were blocked by central administration of the non-selective galanin receptor antagonist, M35 (10 microg, i.c.v.). Interestingly, the benzodiazepine receptor antagonist, flumazenil (1mg/kg, i.p.), reversed galnons effect in the four plate test, implicating GABAergic neurotransmission as a potential mechanism underlying this anxiolytic-like response. In the elevated zero maze, galnon (0.3-3.0mg/kg, i.p.) and galanin (0.03-0.3 microg, i.c.v.) increased the time spent in the open arms, while in the stress-induced hyperthermia model, galnon (0.3-30 mg/kg, i.p.) attenuated stress-induced changes in body temperature. Consistent with these anxiolytic-like effects, in vivo microdialysis showed that acute galnon (3mg/kg, i.p.) treatment preferentially elevated levels of GABA in the rat amygdala, a brain area linked to fear and anxiety behaviors. In contrast to the effects in anxiety models, neither galnon (1-5.6 mg/kg, i.p.) nor galanin (0.3-3.0 microg, i.c.v.) demonstrated antidepressant-like effects in the mouse tail suspension test. Galnon (1-10mg/kg, i.p.) also failed to reduce immobility time in the rat forced swim test. In vitro, galnon and galanin showed affinity for human galanin receptors expressed in Bowes melanoma cells (K(i)=5.5 microM and 0.2 nM, respectively). Galanin displayed high affinity and functional potency for membranes expressing rat GALR1 receptors (K(i)=0.85 nM; EC(50)=0.6 nM), while galnon (10 microM) failed to displace radiolabeled galanin or inhibit cAMP production in the same GALR1 cell line. Galnon (10 microM) showed affinity for NPY1, NK2, M5, and somatostatin receptors but no affinity for galanin receptors expressed in rat hippocampal membranes. Taken together, the present series of studies demonstrate novel effects of galnon in various preclinical models of anxiety and highlight the galaninergic system as a novel therapeutic target for the treatment of anxiety-related disorders. Moreover, these data indicate rodent GALR1 receptors do not mediate galnons in vivo activity.


Current protocols in protein science | 2008

Schedule‐Induced Polydipsia: A Rat Model of Obsessive‐Compulsive Disorder

Brian Platt; Chad E. Beyer; Lee E. Schechter; Sharon Rosenzweig-Lipson

Obsessive‐compulsive disorder (OCD) is difficult to model in animals due to the involvement of both mental (obsessions) and physical (compulsions) symptoms. Due to limitations of using animals to evaluate obsessions, OCD models are limited to evaluation of the compulsive and repetitive behaviors of animals. Of these, models of adjunctive behaviors offer the most value in regard to predicting efficacy of anti‐OCD drugs in the clinic. Adjunctive behaviors are those that are maintained indirectly by the variables that control another behavior, rather than directly by their own typical controlling variables. Schedule‐induced polydipsia (SIP) is an adjunctive model in which rats exhibit exaggerated drinking behavior (polydipsia) when presented with food pellets under a fixed‐time schedule. The polydipsic response is an excessive manifestation of a normal behavior (drinking), providing face validity to the model. Furthermore, clinically effective drugs for the treatment of OCD decrease SIP. This protocol describes a rat SIP model of OCD and provides preclinical data for drugs that decrease polydipsia and are clinically effective in the treatment of OCD. Curr. Protoc. Neurosci. 43:9.27.1‐9.27.8.


The International Journal of Neuropsychopharmacology | 2010

Preclinical characterization of BRL 44408: antidepressant- and analgesic-like activity through selective α2A-adrenoceptor antagonism

Jason M. Dwyer; Brian Platt; Stacey J. Sukoff Rizzo; Claudine Pulicicchio; Caitlin Wantuch; Mei-Yi Zhang; Terri Cummons; Liza Leventhal; Corey N. Bender; Jean Zhang; Dianne Kowal; Shendi Lu; S. Johannes R. Rajarao; Deborah L. Smith; Adam D. Shilling; Jianyao Wang; John A. Butera; Lynn Resnick; Sharon Rosenzweig-Lipson; Lee E. Schechter; Chad E. Beyer

Biogenic amines such as norepinephrine, dopamine, and serotonin play a well-described role in the treatment of mood disorders and some types of pain. As alpha2A-adrenoceptors regulate the release of these neurotransmitters, we examined the therapeutic potential of BRL 44408, a potent (Ki=8.5 nM) and selective (>50-fold) alpha2A-adrenoceptor antagonist (K(B)=7.9 nM). In rats, BRL 44408 penetrated the central nervous system resulting in peak brain and plasma concentrations of 586 ng/g and 1124 ng/ml, respectively. In a pharmacodynamic assay, pretreatment with BRL 44408 to rats responding under a fixed-ratio 30 operant response paradigm resulted in a rightward shift of the clonidine dose-response curve, an effect indicative of alpha2-adrenoceptor antagonism in vivo. Consistent with presynaptic autoreceptor antagonism and tonic regulation of neurotransmitter release, acute administration of BRL 44408 elevated extracellular concentrations of norepinephrine and dopamine, but not serotonin, in the medial prefrontal cortex. Additionally, BRL 44408, probably by inhibiting alpha2A heteroceptors, produced a significant increase in cortical levels of acetylcholine. In the forced swim test and schedule-induced polydipsia assay, BRL 44408 produced an antidepressant-like response by dose-dependently decreasing immobility time and adjunctive water intake, respectively, while in a model of visceral pain, BRL 44408 exhibited analgesic activity by decreasing para-phenylquinone (PPQ)-induced abdominal stretching. Finally, BRL 44408 did not produce deficits in overall motor coordination nor alter general locomotor activity. This preclinical characterization of the neurochemical and behavioural profile of BRL 44408 suggests that selective antagonism of alpha2A-adrenoceptors may represent an effective treatment strategy for mood disorders and visceral pain.

Collaboration


Dive into the Brian Platt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qian Lin

Princeton University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge