Lee Murphy
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lee Murphy.
Nature | 1998
Stewart T. Cole; Roland Brosch; Julian Parkhill; Thierry Garnier; Carol Churcher; David Harris; Stephen V. Gordon; Karin Eiglmeier; S. Gas; Clifton E. Barry; Fredj Tekaia; K. L. Badcock; D. Basham; D. Brown; Tracey Chillingworth; R. Connor; Robert Davies; K. Devlin; Theresa Feltwell; S. Gentles; N. Hamlin; S. Holroyd; T. Hornsby; Kay Jagels; Anders Krogh; J. McLean; Sharon Moule; Lee Murphy; Karen Oliver; J. Osborne
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
Nature | 2002
Stephen D. Bentley; K. F. Chater; A.-M. Cerdeño-Tárraga; Gregory L. Challis; Nicholas R. Thomson; Keith D. James; David Harris; M. A. Quail; H. Kieser; D. Harper; Alex Bateman; S. Brown; G. Chandra; Carton W. Chen; Mark O. Collins; Ann Cronin; Audrey Fraser; Arlette Goble; J. Hidalgo; T. Hornsby; S. Howarth; Chih-Hung Huang; T. Kieser; L. Larke; Lee Murphy; K. Oliver; Susan O'Neil; Ester Rabbinowitsch; Marie-Adele Rajandream; Kim Rutherford
Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent ‘tissue-specific’ isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central ‘core’ of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.
Nature | 2001
Stewart T. Cole; Karin Eiglmeier; Julian Parkhill; K. D. James; Nicholas R. Thomson; Paul R. Wheeler; Nadine Honoré; Thierry Garnier; Carol Churcher; David Harris; Karen Mungall; D. Basham; D. Brown; Tracey Chillingworth; R. Connor; Robert Davies; K. Devlin; S. Duthoy; Theresa Feltwell; A. Fraser; N. Hamlin; S. Holroyd; T. Hornsby; Kay Jagels; Céline Lacroix; J. Maclean; Sharon Moule; Lee Murphy; Karen Oliver; Michael A. Quail
Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41u2009Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.
Nature | 2005
William C. Nierman; Arnab Pain; Michael J. Anderson; Jennifer R. Wortman; H. Stanley Kim; Javier Arroyo; Matthew Berriman; Keietsu Abe; David B. Archer; Clara Bermejo; Joan W. Bennett; Paul Bowyer; Dan Chen; Matthew Collins; Richard Coulsen; Robert Davies; Paul S. Dyer; Mark L. Farman; Nadia Fedorova; Natalie D. Fedorova; Tamara V. Feldblyum; Reinhard Fischer; Nigel Fosker; Audrey Fraser; José Luis García; María José García; Ariette Goble; Gustavo H. Goldman; Katsuya Gomi; Sam Griffith-Jones
Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.
Nature Genetics | 2003
Julian Parkhill; Mohammed Sebaihia; Andrew Preston; Lee Murphy; Nicholas R. Thomson; David Harris; Matthew T. G. Holden; Carol Churcher; Stephen D. Bentley; Karen Mungall; Ana Cerdeño-Tárraga; Louise M. Temple; Keith James; Barbara Harris; Michael A. Quail; Mark Achtman; Rebecca Atkin; Steven Baker; David Basham; Nathalie Bason; Inna Cherevach; Tracey Chillingworth; Matthew Collins; Anne Cronin; Paul Davis; Jonathan Doggett; Theresa Feltwell; Arlette Goble; N. Hamlin; Heidi Hauser
Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative β-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
PLOS Genetics | 2006
Stephen D. Bentley; David M. Aanensen; Angeliki Mavroidi; David L. Saunders; Ester Rabbinowitsch; Matthew Collins; Kathy Donohoe; David Harris; Lee Murphy; Michael A. Quail; Gabby Samuel; Ian C. Skovsted; Margit S. Kaltoft; Bart Barrell; Peter R. Reeves; Julian Parkhill; Brian G. Spratt
Several major invasive bacterial pathogens are encapsulated. Expression of a polysaccharide capsule is essential for survival in the blood, and thus for virulence, but also is a target for host antibodies and the basis for effective vaccines. Encapsulated species typically exhibit antigenic variation and express one of a number of immunochemically distinct capsular polysaccharides that define serotypes. We provide the sequences of the capsular biosynthetic genes of all 90 serotypes of Streptococcus pneumoniae and relate these to the known polysaccharide structures and patterns of immunological reactivity of typing sera, thereby providing the most complete understanding of the genetics and origins of bacterial polysaccharide diversity, laying the foundations for molecular serotyping. This is the first time, to our knowledge, that a complete repertoire of capsular biosynthetic genes has been available, enabling a holistic analysis of a bacterial polysaccharide biosynthesis system. Remarkably, the total size of alternative coding DNA at this one locus exceeds 1.8 Mbp, almost equivalent to the entire S. pneumoniae chromosomal complement.
Nature | 1999
Sharen Bowman; D. Lawson; D. Basham; D. Brown; Tracey Chillingworth; Carol Churcher; Alister G. Craig; Robert Davies; K. Devlin; Theresa Feltwell; S. Gentles; R. Gwilliam; N. Hamlin; David J. Harris; S. Holroyd; T. Hornsby; Paul Horrocks; Kay Jagels; B. Jassal; S. Kyes; J. McLean; Sharon Moule; Karen Mungall; Lee Murphy; Karen Oliver; Michael A. Quail; Marie-Adele Rajandream; Simon Rutter; J. Skelton; R. Squares
Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5′ or 3′ exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.
Genome Biology | 2008
Lisa Crossman; Virginia C. Gould; J. Maxwell Dow; Georgios S. Vernikos; Aki Okazaki; Mohammed Sebaihia; David L. Saunders; Claire Arrowsmith; Tim Carver; Nicholas Peters; Ellen Adlem; Arnaud Kerhornou; Angela Lord; Lee Murphy; Katharine Seeger; R. Squares; Simon Rutter; Michael A. Quail; Mari Adele Rajandream; David Harris; Carol Churcher; Stephen D. Bentley; Julian Parkhill; Nicholas R. Thomson; Matthew B. Avison
BackgroundStenotrophomonas maltophilia is a nosocomial opportunistic pathogen of the Xanthomonadaceae. The organism has been isolated from both clinical and soil environments in addition to the sputum of cystic fibrosis patients and the immunocompromised. Whilst relatively distant phylogenetically, the closest sequenced relatives of S. maltophilia are the plant pathogenic xanthomonads.ResultsThe genome of the bacteremia-associated isolate S. maltophilia K279a is 4,851,126 bp and of high G+C content. The sequence reveals an organism with a remarkable capacity for drug and heavy metal resistance. In addition to a number of genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, nine resistance-nodulation-division (RND)-type putative antimicrobial efflux systems are present. Functional genomic analysis confirms a role in drug resistance for several of the novel RND efflux pumps. S. maltophilia possesses potentially mobile regions of DNA and encodes a number of pili and fimbriae likely to be involved in adhesion and biofilm formation that may also contribute to increased antimicrobial drug resistance.ConclusionThe panoply of antimicrobial drug resistance genes and mobile genetic elements found suggests that the organism can act as a reservoir of antimicrobial drug resistance determinants in a clinical environment, which is an issue of considerable concern.
Genome Biology | 2009
Mark W. Silby; Ana Cerdeño-Tárraga; Georgios S. Vernikos; Stephen R. Giddens; Robert W. Jackson; Gail M. Preston; Xue-Xian Zhang; Christina D. Moon; Stefanie M. Gehrig; Scott A.C. Godfrey; Christopher G. Knight; Jacob G. Malone; Zena Robinson; Andrew J. Spiers; Simon R. Harris; Gregory L. Challis; Alice M. Yaxley; David Harris; Kathy Seeger; Lee Murphy; Simon Rutter; Rob Squares; Michael A. Quail; Elizabeth Saunders; Konstantinos Mavromatis; Thomas Brettin; Stephen D. Bentley; Joanne Hothersall; Elton R. Stephens; Christopher M. Thomas
BackgroundPseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species.ResultsComparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed repeat deserts lacking repeats, covering approximately 40% of the genome.ConclusionsP. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Nature | 2002
Neil Hall; Arnab Pain; Matthew Berriman; Carol Churcher; Barbara Harris; David Harris; Karen Mungall; Sharen Bowman; Rebecca Atkin; Stephen Baker; Andy Barron; Karen Brooks; Caroline O. Buckee; C. Burrows; Inna Cherevach; Tracey Chillingworth; Z. Christodoulou; Louise Clark; Richard Clark; Craig Corton; Ann Cronin; Robert Davies; Paul Davis; P. Dear; F. Dearden; Jonathon Doggett; Theresa Feltwell; Arlette Goble; Ian Goodhead; R. Gwilliam
Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3–9 and 13 of P. falciparum clone 3D7—these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.