Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee Sun New is active.

Publication


Featured researches published by Lee Sun New.


Molecular Pharmacology | 2010

Mechanism-Based Inactivation of Cytochrome P450 3A4 by Lapatinib

Woon Chien Teng; Jing Wen Oh; Lee Sun New; Michelle D. Wahlin; Sidney D. Nelson; Han Kiat Ho; Eric Chun Yong Chan

Fatalities stemming from hepatotoxicity associated with the clinical use of lapatinib (Tykerb), an oral dual tyrosine kinase inhibitor (ErbB-1 and ErbB-2) used in the treatment of metastatic breast cancer, have been reported. We investigated the inhibition of CYP3A4 by lapatinib as a possible cause of its idiosyncratic toxicity. Inhibition of CYP3A4 was time-, concentration-, and NADPH-dependent, with kinact = 0.0202 min−1 and Ki = 1.709 μM. The partition ratio was approximately 50.9. Addition of GSH did not affect the rate of inactivation. Testosterone protected CYP3A4 from inactivation by lapatinib. The characteristic Soret peak associated with a metabolite-intermediate complex was not observed for lapatinib during spectral difference scanning. However, reduced carbon monoxide (CO)-difference spectroscopy did reveal a 43% loss of the spectrally detectable CYP3A4-CO complex in the presence of lapatinib. Incubation of either lapatinib or its dealkylated metabolite with human liver microsomes in the presence of GSH resulted in the formation of a reactive metabolite (RM)-GSH adduct derived from the O-dealkylated metabolite of lapatinib. In addition, coincubation of lapatinib with ketoconazole inhibited the formation of the RM-GSH adduct. In conclusion, we demonstrated for the first time that lapatinib is a mechanism-based inactivator of CYP3A4, most likely via the formation and further oxidation of its O-dealkylated metabolite to a quinoneimine that covalently modifies the CYP3A4 apoprotein and/or heme moiety.


Nature Genetics | 2014

Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model.

Emilie A. Bard-Chapeau; Anh Tuan Nguyen; Alistair G. Rust; Ahmed Sayadi; Philip Lee; Belinda Q. Chua; Lee Sun New; Johann de Jong; Jerrold M. Ward; Christopher K.Y. Chin; Valerie Chew; Han Chong Toh; Jean Pierre Abastado; Touati Benoukraf; Richie Soong; Frederic Bard; Adam J. Dupuy; Randy L. Johnson; George K. Radda; Eric Chun Yong Chan; Lodewyk F. A. Wessels; David J. Adams; Nancy A. Jenkins; Neal G. Copeland

The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC, we performed a near-saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers and a very large number (2,860) of candidate later stage drivers that were enriched for genes that are mutated, deregulated or functioning in signaling pathways important for human HCC, with a striking 1,199 genes being linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC.


Rapid Communications in Mass Spectrometry | 2009

Pharmaceutical metabolite profiling using quadrupole/ion mobility spectrometry/time-of-flight mass spectrometry.

Eric Chun Yong Chan; Lee Sun New; Chun Wei Yap; Lin Tang Goh

The use of hybrid quadrupole ion mobility spectrometry time-of-flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (T(d)) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent-excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI-X, MI-Y and MI-Z), inverse mobility and collision cross-section (CCS). The correlation of T(d) with these parameters is presented and discussed. IMS/TOF tandem mass spectrometry experiments (MS(2) and MS(3)) were successfully performed on the N-acetyl-p-benzoquinoneimine glutathione (NAPQI-GSH) adduct derived from the in vitro microsomal metabolism of APAP. As comparison, similar experiments were also performed using hybrid triple quadrupole linear ion trap mass spectrometry (QTRAPMS) and quadrupole time-of-flight mass spectrometry (QTOFMS). The abilities to resolve the product ions of the metabolite within the drift tube and fragment the ion mobility resolved product ions in the transfer travelling wave-enabled stacked ring ion guide (TWIG) demonstrated the potential applicability of the Q/IMS/TOFMS technique in pharmaceutical metabolite profiling.


Drug Metabolism and Disposition | 2011

Metabolic Intermediate Complex Formation of Human Cytochrome P450 3A4 by Lapatinib

Hideo Takakusa; Michelle D. Wahlin; Chunsheng Zhao; Kelsey L. Hanson; Lee Sun New; Eric Chun Yong Chan; Sidney D. Nelson

Lapatinib, an oral breast cancer drug, has recently been reported to be a mechanism-based inactivator of cytochrome P450 (P450) 3A4 and also an idiosyncratic hepatotoxicant. It was suggested that formation of a reactive quinoneimine metabolite was involved in mechanism-based inactivation (MBI) and/or hepatotoxicity. We investigated the mechanism of MBI of P450 3A4 by lapatinib. Liquid chromatography-mass spectrometry analysis of P450 3A4 after incubation with lapatinib did not show any peak corresponding to irreversible modifications. The enzymatic activity inactivated by lapatinib was completely restored by the addition of potassium ferricyanide. These results indicate that the mechanism of MBI by lapatinib is quasi-irreversible and mediated via metabolic intermediate complex (MI complex) formation. This finding was verified by the increase in a signature Soret absorbance at approximately 455 nm. Two amine oxidation products of the metabolism of lapatinib by P450 3A4 were characterized: N-hydroxy lapatinib (M3) and the oxime form of N-dealkylated lapatinib (M2), suggesting that a nitroso or another related intermediate generated from M3 is involved in MI complex formation. In contrast, P450 3A5 was much less susceptible to MBI by lapatinib via MI complex formation than P450 3A4. In addition, P450 3A5 had a significantly lower ability than 3A4 to generate M3, consistent with N-hydroxylation as the initial step in the pathway to MI complex formation. In conclusion, our results demonstrate that the primary mechanism for MBI of P450 3A4 by lapatinib is not irreversible modification by the quinoneimine metabolite, but quasi-irreversible MI complex formation mediated via oxidation of the secondary amine group of lapatinib.


Toxicology Letters | 2008

Prevention of acetaminophen (APAP)-induced hepatotoxicity by leflunomide via inhibition of APAP biotransformation to N-acetyl-p-benzoquinone imine.

Su Ching Tan; Lee Sun New; Eric Chun Yong Chan

Acetaminophen (APAP) is safe at therapeutic levels but causes liver injury via N-acetyl-p-benzoquinone imine (NAPQI)-induced oxidative stress when overdose. Recent studies indicated that mitochondrial permeability transition (mPT) plays a key role in APAP-induced toxicity and leflunomide (LEF) protects against the toxicity through inhibition of c-jun NH2-terminal protein kinase (JNK)-mediated pathway of mPT. It is not clearly understood if LEF also exerts its protective effect through inhibition of APAP bioactivation to the toxic NAPQI. The present work was undertaken to study the effect of LEF on the bioactivation of APAP to NAPQI. Mechanism-based inhibition incubations performed in mouse and human liver microsomes (MLM and HLM) indicated that inhibition of APAP bioactivation to NAPQI was observed in MLM but not in HLM. Furthermore, LEF but not its active metabolite, A77-1726, was shown to be the main inhibitor. When APAP and LEF were incubated with human recombinant P450 enzymes, CYP1A2 was found to be the isozyme responsible for the inhibition of APAP bioactivation. Species variation in CYP1A2 enzymes probably accounted for the different observations in our MLM and HLM studies. We concluded that inhibition of NAPQI formation is not a probable pathway that LEF protects APAP-induced hepatotoxicity in human.


Toxicology Letters | 2010

Investigation of the role of the thiazolidinedione ring of troglitazone in inducing hepatotoxicity.

Sudipta Saha; Lee Sun New; Han Kiat Ho; Wai Keung Chui; Eric Chun Yong Chan

Troglitazone (TGZ) is an orally active hypoglycemic agent which is used for the treatment of non-insulin-dependent diabetes mellitus. It had been associated with severe drug-induced liver failure which resulted in its withdrawal from the market in 2000. While the exact mechanism of its toxicity remains unknown, it has been postulated that the formation of toxic reactive metabolites (RMs) may play an important role in the hepatotoxicity of TGZ. The purpose of this study is to investigate the role of sulfur moiety of thiazolidinedione (TZD) nucleus in inducing liver toxicity via the formation of RMs. An analogue of TGZ, trosuccinimide (TSN), was synthesized chemically where the sulfur moiety of thiazolidinedione ring was replaced by a methylene group. Both compounds were incubated independently with human liver microsomes enriched with glutathione (GSH) and normal human hepatocytes (THLE-2 cell lines) to profile GSH-adducts using ultra performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS). Four RM-GSH conjugates of TGZ were identified during the profiling experiments of which three were related to the sulfur moiety of the TZD ring, whereas no RM of TSN was detected in both microsomes and hepatocytes. MTT, GSH and protein carbonyl (PC) assays were performed using THLE-2 hepatocytes to measure the levels of toxicity of TGZ and TSN in vitro. Finally, peroxisome proliferator activated receptor gamma (PPAR(gamma)) binding activity was measured to check the binding affinities of both TGZ and TSN. The calculated binding affinities of TGZ and TSN were 332.2 and 1106.0 microM, respectively. Our results indicated collectively that TSN (EC(50)=138.5+/-7.32 microM) was less toxic than TGZ (EC(50)=27.2+/-4.8 microM) in THLE-2 hepatocytes. As both compounds were shown to bind to PPAR(gamma), the substitution of the TZD moiety may be beneficial from a drug design perspective. In conclusion, our study confirmed that the TZD ring of TGZ may be partially responsible for its liver toxicity in humans via the formation of RMs.


Toxicology Letters | 2010

Direct toxicity effects of sulfo-conjugated troglitazone on human hepatocytes.

Sudipta Saha; Lee Sun New; Han Kiat Ho; Wai Keung Chui; Eric Chun Yong Chan

Troglitazone (TGZ), an orally active hypoglycemic agent, was found to be associated with severe drug-induced liver failure and was withdrawn from the market in 2000. Although the exact mechanism is not clear, it has been postulated that the formation of its major sulfo-conjugated metabolite (TGZS) plays an important role in its toxicity. TGZS inhibits bile salt export pump (BSEP) that causes accumulation of bile salts in liver. High concentration of bile salts causes cell death and mitochondrial dysfunction via detergent properties. One question arises whether TGZS has direct toxicity effect on human liver cells in addition to BSEP inhibition. In this study, both TGZ and chemically synthesized TGZS were incubated with normal human hepatocytes (THLE-2 cells) for measuring their cytotoxicity in vitro using the MTT assay. Glutathione (GSH) and protein carbonyl (PC) assays were further performed to measure the oxidative stress generated by these two compounds during incubation with THLE-2 cells. The results from this study indicated that TGZS (EC(50)=21.74+/-5.38 microM) was more toxic than TGZ (EC(50)=41.12+/-4.3 microM) in THLE-2 cells. The GSH and PC data further confirmed that TGZS produced greater oxidative stress in THLE-2 cells as compared to TGZ. In conclusion, our study demonstrated for the first time that TGZS has direct toxicity effect on human liver cells and may be partially responsible for the hepatotoxicity of TGZ.


European Journal of Pharmacology | 2012

Pyrrolidinediones reduce the toxicity of thiazolidinediones and modify their anti-diabetic and anti-cancer properties.

Sudipta Saha; Debra Shu Zhen Chan; Chern Yih Lee; Winnie Wong; Lee Sun New; Wai Keung Chui; Chun Wei Yap; Eric Chun Yong Chan; Han Kiat Ho

Thiazolidinediones have been established as a drug class of significant importance in the treatment of Type II diabetes mellitus and have more recently displayed emergent potential as anti-cancer agents. However, their toxicity has hampered clinical development and usage in both therapeutic areas. Studies to date have implicated that the thiazolidinedione ring is responsible for the generation of reactive metabolites after metabolism. As an attempt to improve their safety profiles, we considered the bioisosteric replacement of the thiazolidinedione ring with a chemically conserved pyrrolidinedione heterocyclic system. Using pyrrolidinedione analogs of the thiazolidinedione drugs troglitazone (TGZ), rosiglitazone (RGZ), and pioglitazone (PGZ), we evaluated their PPAR(γ) activities, anti-cancer properties as well as toxicological effects. Of significance, both pyrrolidinedione analogs demonstrated reduced toxicity. Pharmacologically, they also displayed diminished PPAR(γ) binding and ap2 gene expression in a mouse pre-adipocyte cell line 3T3-L1, but enhanced anti-cancer properties based on the suppression of liver cancer cell line (Huh-7) proliferation and the expression of tumor marker, afp. Overall, this study ascertains the general contribution of the thiazolidinedione ring to their cytotoxicity and proposes the applicability of the pyrrolidinedione ring as a selective and safer choice in anti-diabetic and cancer chemotherapeutics for future drug design.


Journal of Pharmaceutical and Biomedical Analysis | 2010

A sensitive LC/MS/MS bioanalysis assay of orally administered lipoic acid in rat blood and brain tissue

Hui Ting Chng; Lee Sun New; Aveline H. Neo; Catherine W. Goh; Edward R. Browne; Eric Chun Yong Chan

A sensitive liquid chromatography tandem mass spectrometry (LC/MS/MS) bioanalytical method was developed and validated to analyze lipoic acid (LA) in rat blood and brain samples. Ten mobile phase combinations were investigated during method development. Mobile phase combination of 0.1% acetic acid (pH 4 adjusted with ammonia solution)/acetonitrile was most optimum in terms of sensitivity and peak shape of LA and the internal standard, valproic acid. Sample extraction method was explored using liquid-liquid extraction and protein precipitation methods. Protein precipitation yielded the highest recovery of the analytes from blood and brain ranging from 92 to 115%. The lower limit of quantitation (LLOQ) of LA was 0.1ng/mL (0.485nM) in both blood and brain while on-column lower limit of detection (LLOD) was 0.03pg. The precision (% R.S.D.) ranged from 1.49 to 26.39% and 1.49 to 10.89% for intra- and inter-day assays, respectively. The accuracy ranged from 91.2 to 116.17% for intra-day assay and 102.68 to 114.33% for inter-day assay.


Drug Metabolism and Disposition | 2012

Interaction of Lapatinib with Cytochrome P450 3A5

Eric Chun Yong Chan; Lee Sun New; Teck Beng Chua; Chun Wei Yap; Han Kiat Ho; Sidney D. Nelson

Lapatinib, an oral tyrosine kinase inhibitor used for breast cancer, has been reported to cause idiosyncratic hepatotoxicity. Recently, it has been found that lapatinib forms a metabolite-inhibitor complex (MIC) with CYP3A4 via the formation of an alkylnitroso intermediate. Because CYP3A5 is highly polymorphic compared with CYP3A4 and also oxidizes lapatinib, we investigated the interactions of lapatinib with CYP3A5. Lapatinib inactivated CYP3A5 in a time-, concentration-, and NADPH-dependent manner using testosterone as a probe substrate with KI and kinact values of 0.0376 mM and 0.0226 min−1, respectively. However, similar results were not obtained when midazolam was used as the probe substrate, suggesting that inactivation of CYP3A5 by lapatinib is site-specific. Poor recovery of CYP3A5 activity postdialysis and the lack of a Soret peak confirmed that lapatinib does not form a MIC with CYP3A5. The reduced CO difference spectrum further suggested that a large fraction of the reactive metabolite of lapatinib is covalently adducted to the apoprotein of CYP3A5. GSH trapping of a reactive metabolite of lapatinib formed by CYP3A5 confirmed the formation of a quinoneimine-GSH adduct derived from the O-dealkylated metabolite of lapatinib. In silico docking studies supported the preferential formation of an O-dealkylated metabolite of lapatinib by CYP3A5 compared with an N-hydroxylation reaction that is predominantly catalyzed by CYP3A4. In conclusion, lapatinib appears to be a mechanism-based inactivator of CYP3A5 via adduction of a quinoneimine metabolite.

Collaboration


Dive into the Lee Sun New's collaboration.

Top Co-Authors

Avatar

Eric Chun Yong Chan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Han Kiat Ho

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Wen Oh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Wai Keung Chui

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun Wei Yap

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Chun Yip Chan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Evelyn Goh

Singapore Science Park

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge