Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lee-Yang Wong is active.

Publication


Featured researches published by Lee-Yang Wong.


Environmental Health Perspectives | 2007

Exposure of the U.S. Population to Bisphenol A and 4-tertiary-Octylphenol: 2003–2004

Antonia M. Calafat; Xiaoyun Ye; Lee-Yang Wong; John A. Reidy; Larry L. Needham

Background Bisphenol A (BPA) and 4-tertiary-octylphenol (tOP) are industrial chemicals used in the manufacture of polycarbonate plastics and epoxy resins (BPA) and nonionic surfactants (tOP). These products are in widespread use in the United States. Objectives We aimed to assess exposure to BPA and tOP in the U.S. general population. Methods We measured the total (free plus conjugated) urinary concentrations of BPA and tOP in 2,517 participants ≥ 6 years of age in the 2003–2004 National Health and Nutrition Examination Survey using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry. Results BPA and tOP were detected in 92.6% and 57.4% of the persons, respectively. Least square geometric mean (LSGM) concentrations of BPA were significantly lower in Mexican Americans than in non-Hispanic blacks (p = 0.006) and non-Hispanic whites (p = 0.007); LSGM concentrations for non-Hispanic blacks and non-Hispanic whites were not statistically different (p = 0.21). Females had statistically higher BPA LSGM concentrations than males (p = 0.043). Children had higher concentrations than adolescents (p < 0.001), who in turn had higher concentrations than adults (p = 0.003). LSGM concentrations were lowest for participants in the high household income category (>


Environmental Health Perspectives | 2007

Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000

Antonia M. Calafat; Lee-Yang Wong; Zsuzsanna Kuklenyik; John A. Reidy; Larry L. Needham

45,000/year). Conclusions Urine concentrations of total BPA differed by race/ethnicity, age, sex, and household income. These first U.S. population representative concentration data for urinary BPA and tOP should help guide public health research priorities, including studies of exposure pathways, potential health effects, and risk assessment.


Environmental Science & Technology | 2011

Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008.

Kayoko Kato; Lee-Yang Wong; Lily T. Jia; Zsuzsanna Kuklenyik; Antonia M. Calafat

Background Polyfluoroalkyl chemicals (PFCs) have been used since the 1950s in numerous commercial applications. Exposure of the general U.S. population to PFCs is widespread. Since 2002, the manufacturing practices for PFCs in the United States have changed considerably. Objectives We aimed to assess exposure to perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and eight other PFCs in a representative 2003–2004 sample of the general U.S. population ≥ 12 years of age and to determine whether serum concentrations have changed since the 1999–2000 National Health and Nutrition Examination Survey (NHANES). Methods By using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry, we analyzed 2,094 serum samples collected from NHANES 2003–2004 participants. Results We detected PFOS, PFOA, PFHxS, and PFNA in > 98% of the samples. Concentrations differed by race/ethnicity and sex. Geometric mean concentrations were significantly lower (approximately 32% for PFOS, 25% for PFOA, 10% for PFHxS) and higher (100%, PFNA) than the concentrations reported in NHANES 1999–2000 (p < 0.001). Conclusions In the general U.S. population in 2003–2004, PFOS, PFOA, PFHxS, and PFNA serum concentrations were measurable in each demographic population group studied. Geometric mean concentrations of PFOS, PFOA, and PFHxS in 2003–2004 were lower than in 1999–2000. The apparent reductions in concentrations of PFOS, PFOA, and PFHxS most likely are related to discontinuation in 2002 of industrial production by electrochemical fluorination of PFOS and related perfluorooctanesulfonyl fluoride compounds.


Environmental Health Perspectives | 2007

Urinary Concentrations of Triclosan in the U.S. Population: 2003–2004

Antonia M. Calafat; Xiaoyun Ye; Lee-Yang Wong; John A. Reidy; Larry L. Needham

Since 2002, practices in manufacturing polyfluoroalkyl chemicals (PFCs) in the United States have changed. Previous results from the National Health and Nutrition Examination Survey (NHANES) documented a significant decrease in serum concentrations of some PFCs during 1999-2004. To further assess concentration trends of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA), we analyzed 7876 serum samples collected from a representative sample of the general U.S. population ≥12 years of age during NHANES 1999-2008. We detected PFOS, PFOA, PFNA, and PFHxS in more than 95% of participants. Concentrations differed by sex regardless of age and we observed some differences by race/ethnicity. Since 1999-2000, PFOS concentrations showed a significant downward trend, because of discontinuing industrial production of PFOS, but PFNA concentrations showed a significant upward trend. PFOA concentrations during 1999-2000 were significantly higher than during any other time period examined, but PFOA concentrations have remained essentially unchanged during 2003-2008. PFHxS concentrations showed a downward trend from 1999 to 2006, but concentrations increased during 2007-2008. Additional research is needed to identify the environmental sources contributing to human exposure to PFCs. Nonetheless, these NHANES data suggest that sociodemographic factors may influence exposure and also provide unique information on temporal trends of exposure.


Environmental Health Perspectives | 2008

Concentrations of the Sunscreen Agent Benzophenone-3 in Residents of the United States: National Health and Nutrition Examination Survey 2003–2004

Antonia M. Calafat; Lee-Yang Wong; Xiaoyun Ye; John A. Reidy; Larry L. Needham

Background Triclosan is a synthetic chemical with broad antimicrobial activity that has been used extensively in consumer products, including personal care products, textiles, and plastic kitchenware. Objectives This study was designed to assess exposure to triclosan in a representative sample ≥ 6 years of age of the U.S. general population from the 2003–2004 National Health and Nutrition Examination Survey (NHANES). Methods We analyzed 2,517 urine samples using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry. Results We detected concentrations of total (free plus conjugated) triclosan in 74.6% of samples at concentrations of 2.4–3,790 μg/L. The geometric mean and 95th percentile concentrations were 13.0 μg/L (12.7 μg/g creatinine) and 459.0 μg/L (363.8 μg/g creatinine), respectively. We observed a curvilinear relation between age and adjusted least square geometric mean (LSGM) concentrations of triclosan. LSGM concentrations of triclosan were higher in people in the high household income than in people in low (p < 0.01) and medium (p = 0.04) income categories. Conclusions In about three-quarters of urine samples analyzed as part of NHANES 2003–2004, we detected concentrations of triclosan. Concentrations differed by age and socioeconomic status but not by race/ethnicity and sex. Specifically, the concentrations of triclosan appeared to be highest during the third decade of life and among people with the highest household incomes.


Environmental Health Perspectives | 2010

Urinary concentrations of four parabens in the U.S. population: NHANES 2005-2006.

Antonia M. Calafat; Xiaoyun Ye; Lee-Yang Wong; Amber M. Bishop; Larry L. Needham

Background The capability of benzophenone-3 (BP-3) to absorb and dissipate ultraviolet radiation facilitates its use as a sunscreen agent. BP-3 has other uses in many consumer products (e.g., as fragrance and flavor enhancer, photoinitiator, ultraviolet curing agent, polymerization inhibitor). Objectives Our goal was to assess exposure to BP-3 in a representative sample of the U.S. general population ≥ 6 years of age. Methods Using automated solid-phase extraction coupled to high-performance liquid chromatography–tandem mass spectrometry, we analyzed 2,517 urine samples collected as part of the 2003–2004 National Health and Nutrition Examination Survey. Results We detected BP-3 in 96.8% of the samples. The geometric mean and 95th percentile concentrations were 22.9 μg/L (22.2 μg/g creatinine) and 1,040 μg/L (1,070 μg/g creatinine), respectively. Least-square geometric mean (LSGM) concentrations were significantly higher (p ≤ 0.04) for females than for males, regardless of age. LSGM concentrations were significantly higher for non-Hispanic whites than for non-Hispanic blacks (p ≤ 0.01), regardless of age. Females were more likely than males [adjusted odds ratio (OR) = 3.5; 95% confidence interval (95% CI), 1.9–6.5], and non-Hispanic whites were more likely than non-Hispanic blacks (adjusted OR = 6.8; 95% CI, 2.9–16.2) to have concentrations above the 95th percentile. Conclusions Exposure to BP-3 was prevalent in the general U.S. population during 2003–2004. Differences by sex and race/ethnicity probably reflect differences in use of personal care products containing BP-3.


Environmental Health Perspectives | 2010

Urinary Concentrations of Metabolites of Pyrethroid Insecticides in the General U.S. Population: National Health and Nutrition Examination Survey 1999–2002

Dana B. Barr; Anders O. Olsson; Lee-Yang Wong; Simeon O. Udunka; Samuel E. Baker; Ralph D. Whitehead; Melina S. Magsumbol; Bryan L. Williams; Larry L. Needham

Background Parabens are widely used as antimicrobial preservatives in cosmetics, pharmaceuticals, and food and beverage processing. Objectives We assessed exposure to methyl, ethyl, propyl, and butyl parabens in a representative sample of persons ≥ 6 years of age in the U.S. general population from the 2005–2006 National Health and Nutrition Examination Survey. Methods We analyzed 2,548 urine samples by using online solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography/tandem mass spectrometry. Results We detected methyl paraben (MP) and propyl paraben (PP) in 99.1% and 92.7% of the samples, respectively. We detected ethyl (42.4%) and butyl (47%) parabens less frequently and at median concentrations at least one order of magnitude lower than MP (63.5 μg/L) and PP (8.7 μg/L). Least-square geometric mean (LSGM) concentrations of MP were significantly higher (p ≤ 0.01) among non-Hispanic blacks than among non-Hispanic whites except at older ages (≥ 60 years). Adolescent and adult females had significantly higher (p < 0.01) LSGM concentrations of MP and PP than did adolescent and adult males. Females were more likely than males [adjusted odds ratios (ORs) and 95% confidence intervals (CIs): MP, 3.2 (2.99–5.27); PP, 4.19 (2.34–7.49)] and non-Hispanic blacks were more likely than non-Hispanic whites [MP, 4.99 (2.62–9.50); PP, 3.6 (1.86–7.05)] to have concentrations above the 95th percentile. Conclusions The general U.S. population was exposed to several parabens during 2005–2006. Differences in the urinary concentrations of MP and PP by sex and race/ethnicity likely reflect the use of personal care products containing these compounds.


Environmental Health Perspectives | 2011

Variability of Urinary Concentrations of Bisphenol A in Spot Samples, First Morning Voids, and 24-Hour Collections

Xiaoyun Ye; Lee-Yang Wong; Amber M. Bishop; Antonia M. Calafat

Background Pyrethroid insecticides are the most commonly used residential insecticides in the United States. Objectives Our objective was to assess human exposure via biomonitoring to pyrethroid insecticides in a representative sample of the general U.S. population ≥ 6 years of age. Methods By using isotope-dilution high-performance liquid chromatography/electrospray chemical ionization/tandem mass spectrometry, we measured five urinary metabolites of pyrethroid insecticides in 5,046 samples collected as a part of the 1999–2002 National Health and Nutrition Examination Survey (NHANES). Univariate, multivariate, and Pearson correlation analyses were performed using SUDAAN and SAS software, incorporating the appropriate sample weights into the analyses. Multivariate analyses included age, sex, race/ethnicity, creatinine, fasting status, and urine collection time as covariates. Results We detected 3-phenoxybenzoic acid (3PBA), a metabolite common to many pyrethroid insecticides, in more than 70% of the samples. The least-squares geometric mean (LSGM) concentration (corrected for covariates) of 3PBA and the frequency of detection increased from 1999–2000 (0.292 ng/mL) to 2001–2002 (0.318 ng/mL) but not significantly. Non-Hispanic blacks had significantly higher LSGM 3PBA concentrations than did non-Hispanic whites and Mexican Americans in the 2001–2002 survey period and in the combined 4-year survey periods but not in the 1999–2000 survey period. Children had significantly higher LSGM concentrations of 3PBA than did adolescents in both NHANES periods and than adults in NHANES 1999–2000. Cis- and trans-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid were highly correlated with each other and with 3PBA, suggesting that urinary 3PBA was derived primarily from exposure to permethrin, cypermethrin, or their degradates. Conclusions Pyrethroid insecticide exposure in the U.S. population is widespread, and the presence of its metabolites in the urine of U.S. residents indicates that children may have higher exposures than adolescents and adults.


Environmental Health Perspectives | 2010

Variability over 1 Week in the Urinary Concentrations of Metabolites of Diethyl Phthalate and Di(2-Ethylhexyl) Phthalate among Eight Adults: An Observational Study

James L. Preau; Lee-Yang Wong; Manori J. Silva; Larry L. Needham; Antonia M. Calafat

Background: Human exposure to bisphenol A (BPA) is widespread. After exposure, BPA is rapidly metabolized and eliminated in urine. Therefore, there is considerable within-person and between-person variability of BPA concentrations in spot urine samples. However, no information exists on the within-day variability of urinary BPA concentrations. Objectives: We examined the between-person and within-person and between-day and within-day variability in the urinary BPA concentrations of eight adults who collected all voids for 1 week to investigate the impact of sampling strategy in the exposure assessment of BPA using spot, first morning, or 24-hr urine collections. Methods: We determined the urinary concentrations of BPA using on-line solid-phase extraction coupled to isotope dilution high-performance liquid chromatography/tandem mass spectrometry. Results: The between-day and within-person variability was the primary contributor to the total variance both for first morning voids (77%) and 24-hr urine collections (88%). For the spot collections, we observed considerable within-day variance (70%), which outweighed the between-person (9%) and between-day and within-person (21%) variances. Conclusions: Regardless of the type of void (spot, first morning, 24-hr collection), urinary BPA concentrations for a given adult changed considerably—both within a day and for the 7 days of the study period. Single 24-hr urine collections accurately reflect daily exposure but can misrepresent variability in daily exposures over time. Of interest, when the population investigated is sufficiently large and samples are randomly collected relative to meal ingestion times and bladder emptying times, the single spot–sampling approach may adequately reflect the average exposure of the population to BPA.


Environmental Science & Technology | 2015

Urinary Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of U.S. Adults during 2000–2014

Xiaoyun Ye; Lee-Yang Wong; Josh Kramer; Xiaoliu Zhou; Tao Jia; Antonia M. Calafat

Background Phthalates are metabolized and eliminated in urine within hours after exposure. Several reports suggest that concentrations of phthalate metabolites in a spot urine sample can provide a reliable estimation of exposure to phthalates for up to several months. Objectives We examined inter- and intraperson and inter- and intraday variability in the concentrations of monoethyl phthalate (MEP), the major metabolite of diethyl phthalate, commonly used in personal care products, and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), a metabolite of di(2-ethylhexyl) phthalate (DEHP), a polyvinyl chloride plasticizer of which diet is the principal exposure source, among eight adults who collected all urine voids (average, 7.6 samples/person/day) for 1 week. Methods We analyzed the urine samples using online solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry. Results Regardless of the type of void (spot, first morning, 24-hr collection), for MEP, interperson variability in concentrations accounted for > 75% of the total variance. By contrast, for MEHHP, within-person variability was the main contributor (69–83%) of the total variance. Furthermore, we observed considerable intraday variability in the concentrations of spot samples for MEHHP (51%) and MEP (21%). Conclusions MEP and MEHHP urinary concentrations varied considerably during 1 week, but the main contributors to the total variance differed (interday variability, MEHHP; interperson variability, MEP) regardless of the sampling strategy (spot, first morning, 24-hr collection). The nature of the exposure (diet vs. other lifestyle factors) and timing of urine sampling to evaluate exposure to phthalates should be considered. For DEHP and phthalates to which people are mostly exposed through diet, collecting 24-hr voids for only 1 day may not be advantageous compared with multiple spot collections. When collecting multiple spot urine samples, changing the time of collection may provide the most complete approach to assess exposure to diverse phthalates.

Collaboration


Dive into the Lee-Yang Wong's collaboration.

Top Co-Authors

Avatar

Antonia M. Calafat

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Larry L. Needham

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Xiaoyun Ye

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Wayman E. Turner

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Kayoko Kato

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Donald G. Patterson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Andreas Sjödin

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

James L. Preau

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

John A. Reidy

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Manori J. Silva

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge