Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Preau is active.

Publication


Featured researches published by James L. Preau.


Environmental Health Perspectives | 2010

Variability over 1 Week in the Urinary Concentrations of Metabolites of Diethyl Phthalate and Di(2-Ethylhexyl) Phthalate among Eight Adults: An Observational Study

James L. Preau; Lee-Yang Wong; Manori J. Silva; Larry L. Needham; Antonia M. Calafat

Background Phthalates are metabolized and eliminated in urine within hours after exposure. Several reports suggest that concentrations of phthalate metabolites in a spot urine sample can provide a reliable estimation of exposure to phthalates for up to several months. Objectives We examined inter- and intraperson and inter- and intraday variability in the concentrations of monoethyl phthalate (MEP), the major metabolite of diethyl phthalate, commonly used in personal care products, and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), a metabolite of di(2-ethylhexyl) phthalate (DEHP), a polyvinyl chloride plasticizer of which diet is the principal exposure source, among eight adults who collected all urine voids (average, 7.6 samples/person/day) for 1 week. Methods We analyzed the urine samples using online solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry. Results Regardless of the type of void (spot, first morning, 24-hr collection), for MEP, interperson variability in concentrations accounted for > 75% of the total variance. By contrast, for MEHHP, within-person variability was the main contributor (69–83%) of the total variance. Furthermore, we observed considerable intraday variability in the concentrations of spot samples for MEHHP (51%) and MEP (21%). Conclusions MEP and MEHHP urinary concentrations varied considerably during 1 week, but the main contributors to the total variance differed (interday variability, MEHHP; interperson variability, MEP) regardless of the sampling strategy (spot, first morning, 24-hr collection). The nature of the exposure (diet vs. other lifestyle factors) and timing of urine sampling to evaluate exposure to phthalates should be considered. For DEHP and phthalates to which people are mostly exposed through diet, collecting 24-hr voids for only 1 day may not be advantageous compared with multiple spot collections. When collecting multiple spot urine samples, changing the time of collection may provide the most complete approach to assess exposure to diverse phthalates.


Biomarkers | 2006

Measurement of eight urinary metabolites of di(2-ethylhexyl) phthalate as biomarkers for human exposure assessment

Manori J. Silva; John A. Reidy; James L. Preau; Ella Samandar; Larry L. Needham; Antonia M. Calafat

Abstract Human metabolism of di(2-ethylhexyl) phthalate (DEHP) is complex and yields mono(2-ethylhexyl) phthalate (MEHP) and numerous oxidative metabolites. The oxidative metabolites, mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) and mono(2-carboxymethylhexyl) phthalate (MCMHP), have been considered to be better biomarkers for DEHP exposure assessment than MEHP because urinary levels of these metabolites are generally higher than MEHP, and their measurements are not subject to contamination. The urinary levels of the above metabolites, and of three other recently identified DEHP oxidative metabolites, mono(2-ethyl-3-carboxypropyl) phthalate (MECPrP), mono-2-(1-oxoethylhexyl) phthalate (MOEHP), and mono(2-ethyl-4-carboxybutyl) phthalate (MECBP), were measured in 129 adults. MECPP, MCMHP and MEHHP were present in all the samples analysed. MEHP and the other oxidative metabolites were detected less frequently: MEOHP (99%), MECBP (88%), MECPrP (84%), MEHP (83%) and MOEHP (77%). The levels of all DEHP metabolites were highly correlated (p<0.0001) with each other, confirming a common parent. The ω and ω-1 oxidative metabolites (MECPP, MCMHP, MEHHP and MEOHP) comprised 87.1% of all metabolites measured, and thus are most likely the best biomarkers for DEHP exposure assessment. The percentage of the unglucuronidated free form excreted in urine was higher for the ester linkage carboxylated DEHP metabolites compared with alcoholic and ketonic DEHP metabolites. The percentage of the unglucuronidated free form excreted in urine was higher for the DEHP metabolites with a carboxylated ester side-chain compared with alcoholic and ketonic metabolites. Further, differences were found between the DEHP metabolite profile between this adult population and that of six neonates exposed to high doses of DEHP through extensive medical treatment. In the neonates, MEHP represented 0.6% and MECPP 65.5% of the eight DEHP metabolites measured compared to 6.6% (MEHP) and 31.8% (MECPP) in the adults. Whether the observed differences reflect differences in route/duration of the exposure, age and/or health status of the individuals is presently unknown.


Environmental Health Perspectives | 2006

Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment.

Manori J. Silva; John A. Reidy; James L. Preau; Larry L. Needham; Antonia M. Calafat

Diisononyl phthalate (DINP) is a complex mixture of predominantly nine-carbon branched-chain dialkyl phthalate isomers. Similar to di(2-ethylhexyl) phthalate, a widely used phthalate, DINP causes antiandrogenic effects on developing rodent male fetuses. Traditionally, assessment of human exposure to DINP has been done using monoisononyl phthalate (MINP), the hydrolytic metabolite of DINP, as a biomarker. However, MINP is only a minor urinary metabolite of DINP. Oxidative metabolites, including mono(carboxyisooctyl) phthalate (MCIOP), mono(oxoisononyl) phthalate (MOINP), and mono(hydroxyisononyl) phthalate (MHINP) are the major urinary metabolites in DINP-dosed rats. The urinary concentrations of MINP, MCIOP, MOINP, and MHINP were measured in 129 adult anonymous human volunteers with no known exposure to DINP. Although MINP was not present at detectable levels in any of the samples analyzed, MCIOP, MHINP, and MOINP were detected in 97, 100, and 87% of the urine samples at geometric mean levels equal to 8.6, 11.4, and 1.2 ng/mL, respectively. The concentrations of all three oxidative metabolites were highly correlated with each other (p < 0.0001), which confirms a common precursor. MCIOP was excreted predominantly as a free species, whereas MOINP was excreted mostly in its glucuronidated form. The percentage of MHINP excreted either glucuronidated or in its free form was similar. The significantly higher frequency of detection and urinary concentrations of oxidative metabolites than of MINP suggest that these oxidative metabolites are better biomarkers of exposure assessment of DINP than is MINP. Therefore, we concluded that the prevalence of human exposure to DINP is underestimated by using MINP as the sole DINP urinary biomarker.


Environmental Research | 2013

Environmental exposure to the plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in US adults (2000—2012)

Manori J. Silva; Tao Jia; Ella Samandar; James L. Preau; Antonia M. Calafat

1,2-Cyclohexane dicarboxylic acid, diisononyl ester (DINCH) is a complex mixture of nine carbon branched-chain isomers. It has been used in Europe since 2002 as a plasticizer to replace phthalates such as di(2-ethylhexyl)phthalate (DEHP) and diisononyl phthalate (DINP). Urinary concentrations of the oxidative metabolites of DINCH, namely cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl ester (MCOCH); cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester (MONCH); and cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester (MHNCH), can potentially be used as DINCH exposure biomarkers. The concentrations of MCOCH, MONCH and MHNCH were measured by online solid phase extraction-high performance liquid chromatography-tandem mass spectrometry in urine collected in 2000 (n=114), 2001 (n=57), 2007 (n=23), 2009 (n=118), 2011 (n=94) and 2012 (n=121) from convenience groups of anonymous U.S. adult volunteers with no known DINCH exposure. None of the DINCH metabolites were detected in samples collected in 2000 and 2001. Only one sample collected in 2007 had measureable concentrations of DINCH metabolites. The detection rate for all three metabolites increased from 2007 to 2012. The presence of oxidative metabolites of DINCH in urine suggests that these oxidative metabolites can be used as DINCH biomarkers for exposure assessment even at environmental exposure levels.


Environmental Health Perspectives | 2010

Selecting Adequate Exposure Biomarkers of Diisononyl and Diisodecyl Phthalates: Data from the 2005–2006 National Health and Nutrition Examination Survey

Antonia M. Calafat; Lee-Yang Wong; Manori J. Silva; Ella Samandar; James L. Preau; Lily T. Jia; Larry L. Needham

Background High-molecular-weight phthalates, such as diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP), are used primarily as polyvinyl chloride plasticizers. Objectives We assessed exposure to DINP and DIDP in a representative sample of persons ≥ 6 years of age in the U.S. general population from the 2005–2006 National Health and Nutrition Examination Survey (NHANES). Methods We analyzed 2,548 urine samples by using online solid-phase extraction coupled to isotope dilution high-performance liquid chromatography–tandem mass spectrometry. Results We detected monocarboxyisooctyl phthalate (MCOP), a metabolite of DINP, and monocarboxyisononyl phthalate (MCNP), a metabolite of DIDP, in 95.2% and 89.9% of the samples, respectively. We detected monoisononyl phthalate (MNP), a minor metabolite of DINP, much less frequently (12.9%) and at concentration ranges (> 0.8 μg/L–148.1 μg/L) much lower than MCOP (> 0.7 μg/L– 4,961 μg/L). Adjusted geometric mean concentrations of MCOP and MCNP were significantly higher (p < 0.01) among children than among adolescents and adults. Conclusions The general U.S. population, including children, was exposed to DINP and DIDP. In previous NHANES cycles, the occurrence of human exposure to DINP by using MNP as the sole urinary biomarker has been underestimated, thus illustrating the importance of selecting the most adequate biomarkers for exposure assessment.


Biomarkers | 2007

Assessment of human exposure to di-isodecyl phthalate using oxidative metabolites as biomarkers

Manori J. Silva; John A. Reidy; Kayoko Kato; James L. Preau; Larry L. Needham; Antonia M. Calafat

Abstract Di-isodecyl phthalate (DiDP), primarily used as a plasticiser, is a mixture of isomers with predominantly ten-carbon branched side chains. Assessment of DiDP exposure has not been conducted before because adequate biomarkers were lacking. In 129 adult volunteers with no known exposure to DiDP, the urinary concentrations of three oxidative metabolites of DiDP: monocarboxyisononyl phthalate (MCiNP), monooxoisodecyl phthalate (MOiDP) and monohydroxyisodecyl phthalate (MHiDP), previously identified in DiDP-dosed rats, were estimated by solid-phase extraction coupled to high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using the respective oxidative metabolites of di(2-ethylhexyl)phthalate since authentic standards of the DiDP oxidative metabolites were unavailable. Interestingly, the hydrolytic monoester of DiDP, monoisodecyl phthalate (MiDP), was not detected in any of the samples, while MCiNP, MHiDP and MOiDP were detected in 98%, 96% and 85%, respectively, of the samples tested. MCiNP was excreted predominantly in its free form, whereas MOiDP was excreted as its glucuronide. MCiNP, MHiDP and MOiDP eluted as clusters of multiple peaks from the HPLC column probably due to the presence of numerous structurally similar isomers present in commercial DiDP formulations. The urinary concentrations of these oxidative metabolites correlated significantly (p<0.0001) with each other, thus confirming a common precursor. The urinary concentrations of these DiDP oxidative metabolites also correlated significantly (p<0.0001) with oxidative metabolites of di-isononyl phthalate (DiNP) suggesting the potential presence of DiNP isomers in commercial DiDP or simultaneous use of DiDP and DiNP in consumer products. The concentrations presented are semiquantitative estimates and should be interpreted cautiously. Nevertheless, the higher frequency of detection and higher urinary concentrations of MCiNP, MHiDP and MOiDP than of MiDP suggest that these oxidative metabolites are better biomarkers for DiDP exposure assessment than MiDP. These data also suggest that unless oxidative metabolites are measured, the prevalence of exposure to DiDP will probably be underestimated.


Journal of Exposure Science and Environmental Epidemiology | 2012

Identification of potential biomarkers of exposure to di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), an alternative for phthalate plasticizers

Manori J. Silva; Johnathan Furr; James L. Preau; Ella Samandar; L. Earl Gray; Antonia M. Calafat

Di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) is used as an alternative for some phthalate plasticizers. In rats, DINCH mostly eliminates in feces as cyclohexane-1,2-dicarboxylic acid (CHDA), mono isononyl ester (MINCH) or in urine as CHDA. However, CHDA is not a specific biomarker of DINCH and measuring MINCH in feces is impractical. To identify additional potential biomarkers, we administered DINCH (500 mg/kg body weight) in a single subcutaneous (SC) or oral dose to four adult female Sprague–Dawley rats. We collected 24-h urine samples before dosing (to be used as controls) and 24-h and 48-h after dosing, and serum at necropsy after 48 h. We positively identified and accurately quantified CHDA and cyclohexane-1,4-dicarboxylic acid, mono hydroxyisononyl ester (MHNCH) using authentic standards. Moreover, we tentatively identified MINCH and 12 oxidative metabolites, including 4 cyclohexane ring oxidation products, based on their mass spectrometric-fragmentation patterns. CHDA and MHNCH levels were higher in the urine collected 24 h after oral than SC administration. By contrast, 48-h after dosing, CHDA urinary levels were similar regardless of the exposure route. We detected all but two of the urine metabolites also in serum. Levels of CHDA and MHNCH in serum were lower than in the two post-dose urine collections. Our results suggest that several urinary oxidative metabolites, specifically CHDA, mono oxoisononyl ester and MHNCH may be used as specific biomarkers of DINCH exposure in humans.


Chemosphere | 2011

Urinary and serum metabolites of di-n-pentyl phthalate in rats

Manori J. Silva; Johnathan Furr; Ella Samandar; James L. Preau; L. Earl Gray; Larry L. Needham; Antonia M. Calafat

Di-n-pentyl phthalate (DPP) is used mainly as a plasticizer in nitrocellulose. At high doses, DPP acts as a potent testicular toxicant in rats. We administered a single oral dose of 500 mg kg(-1)bw of DPP to adult female Sprague-Dawley rats (N=9) and collected 24-h urine samples 1d before and 24- and 48-h after DPP was administered to tentatively identify DPP metabolites that could be used as exposure biomarkers. At necropsy, 48 h after dosing, we also collected serum. The metabolites were extracted from urine or serum, resolved with high performance liquid chromatography, and detected by mass spectrometry. Two DPP metabolites, phthalic acid (PA) and mono(3-carboxypropyl) phthalate (MCPP), were identified by using authentic standards, whereas mono-n-pentyl phthalate (MPP), mono(4-oxopentyl) phthalate (MOPP), mono(4-hydroxypentyl) phthalate (MHPP), mono(4-carboxybutyl) phthalate (MCBP), mono(2-carboxyethyl) phthalate (MCEP), and mono-n-pentenyl phthalate (MPeP) were identified based on their full scan mass spectrometric fragmentation pattern. The ω-1 oxidation product, MHPP, was the predominant urinary metabolite of DPP. The median urinary concentrations (μg mL(-1)) of the metabolites in the first 24h urine collection after DPP administration were 993 (MHPP), 168 (MCBP), 0.2 (MCEP), 222 (MPP), 47 (MOPP), 26 (PA), 16 (MPeP), and 9 (MCPP); the concentrations of metabolites in the second 24 h urine collection after DPP administration were significantly lower than in the first collection. We identified some urinary metabolic products in the serum, but at much lower levels than in urine. Because of the similarities in metabolism of phthalates between rats and humans, based on our results and the fact that MHPP can only be formed from the metabolism of DPP, MHPP would be the most adequate DPP exposure biomarker for human exposure assessment. Nonetheless, based on the urinary levels of MHPP, our preliminary data suggest that human exposure to DPP in the United States is rather limited.


Archives of Toxicology | 2017

Erratum to: Exposure to di-2-ethylhexyl terephthalate in a convenience sample of U.S. adults from 2000 to 2016

Manori J. Silva; Lee-Yang Wong; Ella Samandar; James L. Preau; Antonia M. Calafat; Xiaoyun Ye

DEHP metabolites (MECPP [45.5%], MEHHP [1.9%]) compared to the DEHTP metabolites (MECPTP [98.8%], MEHHTP [21.2%]). Contrary to the downward trend from 2000 to 2016 in urinary concentrations of MEHHP and MECPP, we observed an upward trend for MEHHTP and MECPTP. These preliminary data suggest that exposure to DEHTP may be on the rise. Nevertheless, general population exposure data using MEHHTP and MECPTP as exposure biomarkers would increase our understanding of exposure to DEHTP, one of the known DEHP alternatives.


Bulletin of Environmental Contamination and Toxicology | 2004

Detection of phthalate metabolites in human amniotic fluid.

Manori J. Silva; John A. Reidy; Arnetra R. Herbert; James L. Preau; Larry L. Needham; Antonia M. Calafat

Collaboration


Dive into the James L. Preau's collaboration.

Top Co-Authors

Avatar

Antonia M. Calafat

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Manori J. Silva

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Larry L. Needham

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ella Samandar

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

John A. Reidy

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Lee-Yang Wong

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Johnathan Furr

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyun Ye

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Arnetra R. Herbert

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge