Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leeat Keren is active.

Publication


Featured researches published by Leeat Keren.


Nature Biotechnology | 2012

Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters

Eilon Sharon; Yael Kalma; Ayala Sharp; Tali Raveh-Sadka; Michal Levo; Danny Zeevi; Leeat Keren; Zohar Yakhini; Adina Weinberger; Eran Segal

Despite extensive research, our understanding of the rules according to which cis-regulatory sequences are converted into gene expression is limited. We devised a method for obtaining parallel, highly accurate gene expression measurements from thousands of designed promoters and applied it to measure the effect of systematic changes in the location, number, orientation, affinity and organization of transcription-factor binding sites and nucleosome-disfavoring sequences. Our analyses reveal a clear relationship between expression and binding-site multiplicity, as well as dependencies of expression on the distance between transcription-factor binding sites and gene starts which are transcription-factor specific, including a striking ∼10-bp periodic relationship between gene expression and binding-site location. We show how this approach can measure transcription-factor sequence specificities and the sensitivity of transcription-factor sites to the surrounding sequence context, and compare the activity of 75 yeast transcription factors. Our method can be used to study both cis and trans effects of genotype on transcriptional, post-transcriptional and translational control.


Nature Genetics | 2012

Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast

Tali Raveh-Sadka; Michal Levo; Uri Shabi; Boaz Shany; Leeat Keren; Maya Lotan-Pompan; Danny Zeevi; Eilon Sharon; Adina Weinberger; Eran Segal

Understanding how precise control of gene expression is specified within regulatory DNA sequences is a key challenge with far-reaching implications. Many studies have focused on the regulatory role of transcription factor–binding sites. Here, we explore the transcriptional effects of different elements, nucleosome-disfavoring sequences and, specifically, poly(dA:dT) tracts that are highly prevalent in eukaryotic promoters. By measuring promoter activity for a large-scale promoter library, designed with systematic manipulations to the properties and spatial arrangement of poly(dA:dT) tracts, we show that these tracts significantly and causally affect transcription. We show that manipulating these elements offers a general genetic mechanism, applicable to promoters regulated by different transcription factors, for tuning expression in a predictable manner, with resolution that can be even finer than that attained by altering transcription factor sites. Overall, our results advance the understanding of the regulatory code and suggest a potential mechanism by which promoters yielding prespecified expression patterns can be designed.


Molecular Systems Biology | 2014

Promoters maintain their relative activity levels under different growth conditions

Leeat Keren; Ora Zackay; Maya Lotan-Pompan; Uri Barenholz; Erez Dekel; Vered Sasson; Guy Aidelberg; Anat Bren; Danny Zeevi; Adina Weinberger; Uri Alon; Ron Milo; Eran Segal

Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ∼900 S. cerevisiae and ∼1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60–90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoters identity. Quantifying such global effects allows precise characterization of specific regulation—promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome‐wide expression profiles across conditions. We present a parameter‐free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles.


Nucleic Acids Research | 2013

Sequence features of yeast and human core promoters that are predictive of maximal promoter activity

Shai Lubliner; Leeat Keren; Eran Segal

The core promoter is the region in which RNA polymerase II is recruited to the DNA and acts to initiate transcription, but the extent to which the core promoter sequence determines promoter activity levels is largely unknown. Here, we identified several base content and k-mer sequence features of the yeast core promoter sequence that are highly predictive of maximal promoter activity. These features are mainly located in the region 75 bp upstream and 50 bp downstream of the main transcription start site, and their associations hold for both constitutively active promoters and promoters that are induced or repressed in specific conditions. Our results unravel several architectural features of yeast core promoters and suggest that the yeast core promoter sequence downstream of the TATA box (or of similar sequences involved in recruitment of the pre-initiation complex) is a major determinant of maximal promoter activity. We further show that human core promoters also contain features that are indicative of maximal promoter activity; thus, our results emphasize the important role of the core promoter sequence in transcriptional regulation.


Genome Research | 2014

Probing the effect of promoters on noise in gene expression using thousands of designed sequences

Eilon Sharon; David van Dijk; Yael Kalma; Leeat Keren; Ohad Manor; Zohar Yakhini; Eran Segal

Genetically identical cells exhibit large variability (noise) in gene expression, with important consequences for cellular function. Although the amount of noise decreases with and is thus partly determined by the mean expression level, the extent to which different promoter sequences can deviate away from this trend is not fully known. Here, we present a high-throughput method for measuring promoter-driven noise for thousands of designed synthetic promoters in parallel. We use it to investigate how promoters encode different noise levels and find that the noise levels of promoters with similar mean expression levels can vary more than one order of magnitude, with nucleosome-disfavoring sequences resulting in lower noise and more transcription factor binding sites resulting in higher noise. We propose a kinetic model of gene expression that takes into account the nonspecific DNA binding and one-dimensional sliding along the DNA, which occurs when transcription factors search for their target sites. We show that this assumption can improve the prediction of the mean-independent component of expression noise for our designed promoter sequences, suggesting that a transcription factor target search may affect gene expression noise. Consistent with our findings in designed promoters, we find that binding-site multiplicity in native promoters is associated with higher expression noise. Overall, our results demonstrate that small changes in promoter DNA sequence can tune noise levels in a manner that is predictable and partly decoupled from effects on the mean expression levels. These insights may assist in designing promoters with desired noise levels.


Genome Research | 2011

Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters

Danny Zeevi; Eilon Sharon; Maya Lotan-Pompan; Yaniv Lubling; Zohar Shipony; Tali Raveh-Sadka; Leeat Keren; Michal Levo; Adina Weinberger; Eran Segal

Coordinate regulation of ribosomal protein (RP) genes is key for controlling cell growth. In yeast, it is unclear how this regulation achieves the required equimolar amounts of the different RP components, given that some RP genes exist in duplicate copies, while others have only one copy. Here, we tested whether the solution to this challenge is partly encoded within the DNA sequence of the RP promoters, by fusing 110 different RP promoters to a fluorescent gene reporter, allowing us to robustly detect differences in their promoter activities that are as small as ~10%. We found that single-copy RP promoters have significantly higher activities, suggesting that proper RP stoichiometry is indeed partly encoded within the RP promoters. Notably, we also partially uncovered how this regulation is encoded by finding that RP promoters with higher activity have more nucleosome-disfavoring sequences and characteristic spatial organizations of these sequences and of binding sites for key RP regulators. Mutations in these elements result in a significant decrease of RP promoter activity. Thus, our results suggest that intrinsic (DNA-dependent) nucleosome organization may be a key mechanism by which genomes encode biologically meaningful promoter activities. Our approach can readily be applied to uncover how transcriptional programs of other promoters are encoded.


Cell | 2016

Massively Parallel Interrogation of the Effects of Gene Expression Levels on Fitness

Leeat Keren; Jean Hausser; Maya Lotan-Pompan; Ilya Vainberg Slutskin; Hadas Alisar; Sivan Kaminski; Adina Weinberger; Uri Alon; Ron Milo; Eran Segal

Data of gene expression levels across individuals, cell types, and disease states is expanding, yet our understanding of how expression levels impact phenotype is limited. Here, we present a massively parallel system for assaying the effect of gene expression levels on fitness in Saccharomyces cerevisiae by systematically altering the expression level of ∼100 genes at ∼100 distinct levels spanning a 500-fold range at high resolution. We show that the relationship between expression levels and growth is gene and environment specific and provides information on the function, stoichiometry, and interactions of genes. Wild-type expression levels in some conditions are not optimal for growth, and genes whose fitness is greatly affected by small changes in expression level tend to exhibit lower cell-to-cell variability in expression. Our study addresses a fundamental gap in understanding the functional significance of gene expression regulation and offers a framework for evaluating the phenotypic effects of expression variation.


Genome Research | 2015

Noise in gene expression is coupled to growth rate

Leeat Keren; David van Dijk; Shira Weingarten-Gabbay; Dan Davidi; Ghil Jona; Adina Weinberger; Ron Milo; Eran Segal

Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications.


PLOS Computational Biology | 2013

Measurements of the impact of 3' end sequences on gene expression reveal wide range and sequence dependent effects.

Ophir Shalem; Lucas B. Carey; Danny Zeevi; Eilon Sharon; Leeat Keren; Adina Weinberger; Orna Dahan; Yitzhak Pilpel; Eran Segal

A full understanding of gene regulation requires an understanding of the contributions that the various regulatory regions have on gene expression. Although it is well established that sequences downstream of the main promoter can affect expression, our understanding of the scale of this effect and how it is encoded in the DNA is limited. Here, to measure the effect of native S. cerevisiae 3′ end sequences on expression, we constructed a library of 85 fluorescent reporter strains that differ only in their 3′ end region. Notably, despite being driven by the same strong promoter, our library spans a continuous twelve-fold range of expression values. These measurements correlate with endogenous mRNA levels, suggesting that the 3′ end contributes to constitutive differences in mRNA levels. We used deep sequencing to map the 3′UTR ends of our strains and show that determination of polyadenylation sites is intrinsic to the local 3′ end sequence. Polyadenylation mapping was followed by sequence analysis, we found that increased A/T content upstream of the main polyadenylation site correlates with higher expression, both in the library and genome-wide, suggesting that native genes differ by the encoded efficiency of 3′ end processing. Finally, we use single cells fluorescence measurements, in different promoter activation levels, to show that 3′ end sequences modulate protein expression dynamics differently than promoters, by predominantly affecting the size of protein production bursts as opposed to the frequency at which these bursts occur. Altogether, our results lead to a more complete understanding of gene regulation by demonstrating that 3′ end regions have a unique and sequence dependent effect on gene expression.


PLOS ONE | 2016

A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

Uri Barenholz; Leeat Keren; Eran Segal; Ron Milo

Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

Collaboration


Dive into the Leeat Keren's collaboration.

Top Co-Authors

Avatar

Eran Segal

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Adina Weinberger

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Danny Zeevi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eilon Sharon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ron Milo

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Maya Lotan-Pompan

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michal Levo

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Tali Raveh-Sadka

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Uri Barenholz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

David van Dijk

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge