Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leeor Kronik is active.

Publication


Featured researches published by Leeor Kronik.


Surface Science Reports | 1999

Surface photovoltage phenomena: theory, experiment, and applications

Leeor Kronik; Yoram Shapira

The theoretical concepts, experimental tools, and applications of surface photovoltage (SPV) techniques are reviewed in detail. The theoretical discussion is divided into two sections. The first reviews the electrical properties of semiconductor surfaces and the second discusses SPV phenomena. Next, the most common tools for SPV measurements and their relative advantages and disadvantages are reviewed. These include the Kelvin probe and the use of MIS structures, as well as other less used techniques. Recent novel high-spatial-resolution SPV measurement techniques are also presented. Applications include surface photovoltage spectroscopy (SPS) which is a very effective tool for gap state spectroscopy. An in-depth review of quantitative analyses, which permit the extraction of various important surface and bulk parameters, follows. These analyses include: carrier diffusion length; surface band bending, charge, and dipole; surface and bulk recombination rates; surface state distribution and properties; distinction between surface and bulk states; spectroscopy of thin films, heterostructures and quantum structures; and construction of band diagrams. Finally, concluding remarks are given.


Journal of the American Chemical Society | 2009

Reliable Prediction of Charge Transfer Excitations in Molecular Complexes Using Time-Dependent Density Functional Theory

Tamar Stein; Leeor Kronik; Roi Baer

We show how charge transfer excitations at molecular complexes can be calculated quantitatively using time-dependent density functional theory. Predictive power is obtained from range-separated hybrid functionals using nonempirical tuning of the range-splitting parameter. Excellent performance of this approach is obtained for a series of complexes composed of various aromatic donors and the tetracyanoethylene acceptor, paving the way to systematic nonempirical quantitative studies of charge-transfer excitations in real systems.


Journal of Chemical Theory and Computation | 2012

Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals

Leeor Kronik; Tamar Stein; Sivan Refaely-Abramson; Roi Baer

Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generalized Kohn-Sham equation, our method is based on a range-split hybrid functional that uses exact long-range exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO-LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview the formal and practical challenges associated with gap calculations, explain our new approach and how it overcomes previous difficulties, and survey its application to a variety of systems.


Journal of Chemical Physics | 2009

PREDICTION OF CHARGE-TRANSFER EXCITATIONS IN COUMARIN-BASED DYES USING A RANGE-SEPARATED FUNCTIONAL TUNED FROM FIRST PRINCIPLES

Tamar Stein; Leeor Kronik; Roi Baer

We study the description of charge-transfer excitations in a series of coumarin-based donor-bridge-acceptor dyes. We show that excellent predictive power for the excitation energies and oscillator strengths in these systems is obtained by using a range-separated hybrid functional within the generalized Kohn-Sham approach to time-dependent density functional theory. Key to this success is a step for tuning the range separation parameter from first principles. We explore different methods for this tuning step, which are variants of a recently suggested approach for charge-transfer excitations [T. Stein et al., J. Am. Chem. Soc. 131, 2818 (2009)]. We assess the quality of prediction by comparing to excitation energies previously published for the same systems using the approximate coupled-cluster singles and doubles (CC2) method.


Advanced Materials | 2015

Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges

Joseph J. Berry; Tonio Buonassisi; David A. Egger; Gary Hodes; Leeor Kronik; Yueh-Lin Loo; Igor Lubomirsky; Seth R. Marder; Yitzhak Mastai; Joel S. Miller; David B. Mitzi; Yaron Paz; Andrew M. Rappe; I. Riess; Boris Rybtchinski; Oscar M. Stafsudd; Vladan Stevanović; Michael F. Toney; David Zitoun; Antoine Kahn; David S. Ginley; David Cahen

The conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues.


Journal of Chemical Theory and Computation | 2011

Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals.

Noa Marom; Alexandre Tkatchenko; Mariana Rossi; Vivekanand V. Gobre; Oded Hod; Matthias Scheffler; Leeor Kronik

We present a comparative assessment of the accuracy of two different approaches for evaluating dispersion interactions: interatomic pairwise corrections and semiempirical meta-generalized-gradient-approximation (meta-GGA)-based functionals. This is achieved by employing conventional (semi)local and (screened-)hybrid functionals, as well as semiempirical hybrid and nonhybrid meta-GGA functionals of the M06 family, with and without interatomic pairwise Tkatchenko-Scheffler corrections. All of those are tested against the benchmark S22 set of weakly bound systems, a representative larger molecular complex (dimer of NiPc molecules), and a representative dispersively bound solid (hexagonal boron nitride). For the S22 database, we also compare our results with those obtained from the pairwise correction of Grimme (DFT-D3) and nonlocal Langreth-Lundqvist functionals (vdW-DF1 and vdW-DF2). We find that the semiempirical kinetic-energy-density dependence introduced in the M06 functionals mimics some of the nonlocal correlation needed to describe dispersion. However, long-range contributions are still missing. Pair-wise interatomic corrections, applied to conventional semilocal or hybrid functionals, or to M06 functionals, provide for a satisfactory level of accuracy irrespectively of the underlying functional. Specifically, screened-hybrid functionals such as the Heyd-Scuseria-Ernzerhof (HSE) approach reduce self-interaction errors in systems possessing both localized and delocalized orbitals and can be applied to both finite and extended systems. Therefore, they serve as a useful underlying functional for dispersion corrections.


Journal of Applied Physics | 1999

Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices

Uwe Rau; D. Braunger; R. Herberholz; H.W. Schock; Jean-François Guillemoles; Leeor Kronik; David Cahen

Post-deposition air-annealing effects of Cu(In,Ga)Se2 based thin films and heterojunction solar cell devices are studied by photoelectron spectroscopy and admittance spectroscopy. Ultraviolet photoelectron spectroscopy reveals type inversion at the surface of the as-prepared films, which is eliminated after exposure of several minutes to air due to the passivation of surface Se deficiencies. X-ray photoelectron spectroscopy demonstrates that air annealing at 200 °C leads to a decreased Cu concentration at the film surface. Admittance spectroscopy of complete ZnO/CdS/Cu(In,Ga)Se2 heterojunction solar cells shows that the Cu(In,Ga)Se2 surface type inversion is restored by the chemical bath used for CdS deposition. Air annealing of the finished devices at 200 °C reduces the type inversion again due to defect passivation. Our results also show that oxygenation leads to a charge redistribution and to a significant compensation of the effective acceptor density in the bulk of the absorber. This is consistent wi...


Physical Review Letters | 2010

Stacking and Registry Effects in Layered Materials: The Case of Hexagonal Boron Nitride

Noa Marom; Jonathan Bernstein; Jonathan Garel; Alexandre Tkatchenko; Ernesto Joselevich; Leeor Kronik; Oded Hod

The interlayer sliding energy landscape of hexagonal boron nitride (h-BN) is investigated via a van der Waals corrected density functional theory approach. It is found that the main role of the van der Waals forces is to anchor the layers at a fixed distance, whereas the electrostatic forces dictate the optimal stacking mode and the interlayer sliding energy. A nearly free-sliding path is identified, along which band gap modulations of ∼0.6  eV are obtained. We propose a simple geometric model that quantifies the registry matching between the layers and captures the essence of the corrugated h-BN interlayer energy landscape. The simplicity of this phenomenological model opens the way to the modeling of complex layered structures, such as carbon and boron nitride nanotubes.


Physical Review Letters | 2012

Quasiparticle Spectra from a Nonempirical Optimally Tuned Range-Separated Hybrid Density Functional

Sivan Refaely-Abramson; Sahar Sharifzadeh; Niranjan Govind; Jochen Autschbach; Jeffrey B. Neaton; Roi Baer; Leeor Kronik

We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems.


Journal of Physical Chemistry Letters | 2014

Role of Dispersive Interactions in Determining Structural Properties of Organic−Inorganic Halide Perovskites: Insights from First- Principles Calculations

David A. Egger; Leeor Kronik

A microscopic picture of structure and bonding in organic-inorganic perovskites is imperative to understanding their remarkable semiconducting and photovoltaic properties. On the basis of a density functional theory treatment that includes both spin-orbit coupling and dispersive interactions, we provide detailed insight into the crystal binding of lead-halide perovskites and quantify the effect of different types of interactions on the structural properties. Our analysis reveals that cohesion in these materials is characterized by a variety of interactions that includes important contributions from both van der Waals interactions among the halide atoms and hydrogen bonding. We also assess the role of spin-orbit coupling and show that it causes slight changes in lead-halide bonding that do not significantly affect the lattice parameters. Our results establish that consideration of dispersive effects is essential for understanding the structure and bonding in organic-inorganic perovskites in general and for providing reliable theoretical predictions of structural parameters in particular.

Collaboration


Dive into the Leeor Kronik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Egger

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

David Cahen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

James R. Chelikowsky

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Rappe

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ido Azuri

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge