Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sivan Refaely-Abramson is active.

Publication


Featured researches published by Sivan Refaely-Abramson.


Journal of Chemical Theory and Computation | 2012

Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals

Leeor Kronik; Tamar Stein; Sivan Refaely-Abramson; Roi Baer

Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generalized Kohn-Sham equation, our method is based on a range-split hybrid functional that uses exact long-range exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO-LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview the formal and practical challenges associated with gap calculations, explain our new approach and how it overcomes previous difficulties, and survey its application to a variety of systems.


Physical Review Letters | 2012

Quasiparticle Spectra from a Nonempirical Optimally Tuned Range-Separated Hybrid Density Functional

Sivan Refaely-Abramson; Sahar Sharifzadeh; Niranjan Govind; Jochen Autschbach; Jeffrey B. Neaton; Roi Baer; Leeor Kronik

We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems.


Journal of Chemical Theory and Computation | 2014

Outer-valence Electron Spectra of Prototypical Aromatic Heterocycles from an Optimally Tuned Range-Separated Hybrid Functional.

David A. Egger; Shira Weissman; Sivan Refaely-Abramson; Sahar Sharifzadeh; Matthias Dauth; Roi Baer; Stephan Kümmel; Jeffrey B. Neaton; Egbert Zojer; Leeor Kronik

Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett.2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within ∼0.1–0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found—a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost.


Physical Review B | 2015

Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory

Sivan Refaely-Abramson; Manish Jain; Sahar Sharifzadeh; Jeffrey B. Neaton; Leeor Kronik

We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.


Journal of the American Chemical Society | 2015

Electronic Transport via Homopeptides: The Role of Side Chains and Secondary Structure.

Lior Sepunaru; Sivan Refaely-Abramson; Robert Lovrincic; Yulian Gavrilov; Piyush Agrawal; Yaakov Levy; Leeor Kronik; Israel Pecht; Mordechai Sheves; David Cahen

Many novel applications in bioelectronics rely on the interaction between biomolecules and electronically conducting substrates. However, crucial knowledge about the relation between electronic transport via peptides and their amino-acid composition is still absent. Here, we report results of electronic transport measurements via several homopeptides as a function of their structural properties and temperature. We demonstrate that the conduction through the peptide depends on its length and secondary structure as well as on the nature of the constituent amino acid and charge of its residue. We support our experimental observations with high-level electronic structure calculations and suggest off-resonance tunneling as the dominant conduction mechanism via extended peptides. Our findings indicate that both peptide composition and structure can affect the efficiency of electronic transport across peptides.


Journal of Physical Chemistry Letters | 2014

Simultaneous Determination of Structures, Vibrations, and Frontier Orbital Energies from a Self-Consistent Range-Separated Hybrid Functional

Isaac Tamblyn; Sivan Refaely-Abramson; Jeffrey B. Neaton; Leeor Kronik

A self-consistent optimally tuned range-separated hybrid density functional (scOT-RSH) approach is developed. It can simultaneously predict accurate geometries, vibrational modes, and frontier orbital energies. This is achieved by optimizing the range-separation parameter, γ, to both satisfy the ionization energy theorem and minimize interatomic forces. We benchmark our approach against an established hybrid functional, B3LYP, using the G2 test set. scOT-RSH greatly improves the accuracy of occupied frontier orbital energies, with a mean absolute error (MAE) of only 0.2 eV relative to experimental ionization energies compared to 2.96 eV with B3LYP. Geometries do not change significantly compared to those obtained from B3LYP, with a bond length MAE of 0.012 Å compared to 0.008 Å for B3LYP, and a 6.5% MAE for zero-point energies, slightly larger than that of B3LYP (3.1%). scOT-RSH represents a new paradigm in which accurate geometries and ionization energies can be predicted simultaneously from a single functional approach.


Nature Communications | 2016

Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

Meital Eckshtain-Levi; Eyal Capua; Sivan Refaely-Abramson; Soumyajit Sarkar; Yulian Gavrilov; Shinto P. Mathew; Yossi Paltiel; Yaakov Levy; Leeor Kronik; Ron Naaman

Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.


Physical Review B | 2014

Experimental and theoretical electronic structure of quinacridone

Daniel Lüftner; Sivan Refaely-Abramson; Michael Pachler; Roland Resel; M.G. Ramsey; Leeor Kronik; Peter Puschnig

The energy positions of frontier orbitals in organic electronic materials are often studied experimentally by (inverse) photoemission spectroscopy and theoretically within density functional theory. However, standard exchange-correlation functionals often result in too small fundamental gaps, may lead to wrong orbital energy ordering, and do not capture polarization-induced gap renormalization. Here we examine these issues and a strategy for overcoming them by studying the gas phase and bulk electronic structure of the organic molecule quinacridone (5Q), a promising material with many interesting properties for organic devices. Experimentally we perform angle-resolved photoemission spectroscopy (ARUPS) on thin films of the crystalline


Proceedings of the National Academy of Sciences of the United States of America | 2016

Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.

Cunlan Guo; Xi Yu; Sivan Refaely-Abramson; Lior Sepunaru; Tatyana Bendikov; Israel Pecht; Leeor Kronik; Ayelet Vilan; Mordechai Sheves; David Cahen

\ensuremath{\beta}


Journal of Chemical Physics | 2017

Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

Zhen-Fei Liu; David A. Egger; Sivan Refaely-Abramson; Leeor Kronik; Jeffrey B. Neaton

phase of 5Q. Theoretically we employ an optimally tuned range-separated hybrid functional (OT-RSH) within density functional theory. For the gas phase molecule, our OT-RSH result for the ionization potential (IP) represents a substantial improvement over the semilocal PBE and the PBE0 hybrid functional results, producing an IP in quantitative agreement with experiment. For the bulk crystal we take into account the correct screening in the bulk, using the recently developed optimally tuned screened range-separated hybrid (OT-SRSH) approach, while retaining the optimally tuned parameters for the range separation and the short-range Fock exchange. This leads to a band gap narrowing due to polarization effects and results in a valence band spectrum in excellent agreement with experimental ARUPS data, with respect to both peak positions and heights. Finally, full-frequency

Collaboration


Dive into the Sivan Refaely-Abramson's collaboration.

Top Co-Authors

Avatar

Leeor Kronik

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Egger

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Roi Baer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Cahen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Israel Pecht

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Mordechai Sheves

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Shira Weissman

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge