Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lei Kai is active.

Publication


Featured researches published by Lei Kai.


Journal of Biomolecular NMR | 2010

Cell-free expression and stable isotope labelling strategies for membrane proteins.

Solmaz Sobhanifar; Sina Reckel; Friederike Junge; Daniel Schwarz; Lei Kai; Mikhail Karbyshev; Frank Löhr; Frank Bernhard; Volker Dötsch

Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.


Biochimica et Biophysica Acta | 2014

Aquaporins and membrane diffusion of CO2 in living organisms.

Ralf Kaldenhoff; Lei Kai; Norbert Uehlein

BACKGROUND Determination of CO2 diffusion rates in living cells revealed inconsistencies with existing models about the mechanisms of membrane gas transport. Mainly, these discrepancies exist in the determined CO2 diffusion rates of bio-membranes, which were orders of magnitudes below those for pure lipid bilayers or theoretical considerations as well as in the observation that membrane insertion of specific aquaporins was rescuing high CO2 transport rates. This effect was confirmed by functional aquaporin protein analysis in heterologous expression systems as well as in bacteria, plants and partly in mammals. SCOPE OF REVIEW This review summarizes the arguments in favor of and against aquaporin facilitated membrane diffusion of CO2 and reports about its importance for the physiology of living organisms. MAJOR CONCLUSIONS Most likely, the aquaporin tetramer forming an additional fifth pore is required for CO2 diffusion facilitation. Aquaporin tetramer formation, membrane integration and disintegration could provide a mechanism for regulation of cellular CO2 exchange. The physiological importance of aquaporin mediated CO2 membrane diffusion could be shown for plants and cyanobacteria and partly for mammals. GENERAL SIGNIFICANCE Taking the mentioned results into account, consequences for our current picture of cell membrane transport emerge. It appears that in some or many instances, membranes might not be as permeable as it was suggested by current bio-membrane models, opening an additional way of controlling the cellular influx or efflux of volatile substances like CO2. This article is part of a Special Issue entitled Aquaporins.


PLOS ONE | 2010

Preparative Scale Production of Functional Mouse Aquaporin 4 Using Different Cell-Free Expression Modes

Lei Kai; Ralf Kaldenhoff; Jiazhang Lian; Xiangcheng Zhu; Volker Dötsch; Frank Bernhard; Peilin Cen; Zhinan Xu

The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free) expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate) mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent) mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.


Molecular Membrane Biology | 2013

Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers

Christian Roos; Lei Kai; Davide Proverbio; Umesh Ghoshdastider; Slawomir Filipek; Volker Dötsch; Frank Bernhard

Abstract Routine strategies for the cell-free production of membrane proteins in the presence of detergent micelles and for their efficient co-translational solubilization have been developed. Alternatively, the expression in the presence of rationally designed lipid bilayers becomes interesting in particular for biochemical studies. The synthesized membrane proteins would be directed into a more native-like environment and cell-free expression of transporters, channels or other membrane proteins in the presence of supplied artificial membranes could allow their subsequent functional analysis without any exposure to detergents. In addition, lipid-dependent effects on activity and stability of membrane proteins could systematically be studied. However, in contrast to the generally efficient detergent solubilization, the successful stabilization of membrane proteins with artificial membranes appears to be more difficult. A number of strategies have therefore been explored in order to optimize the co-translational association of membrane proteins with different forms of supplied lipid bilayers including liposomes, bicelles, microsomes or nanodiscs. In this review, we have compiled the current state-of-the-art of this technology and we summarize parameters which have been indicated as important for the co-translational association of cell-free synthesized membrane proteins with supplied membranes.


Methods of Molecular Biology | 2012

Systems for the Cell-Free Synthesis of Proteins

Lei Kai; Christian Roos; Stefan Haberstock; Davide Proverbio; Yi Ma; Friederike Junge; Mikhail Karbyshev; Volker Dötsch; Frank Bernhard

We describe a system for the cell-free expression of proteins based on extracts from Escherichia coli. Two reaction configurations, batch and continuous exchange, are discussed and analytical scale as well as preparative scale setups are documented. Guidelines for the systematic development and optimization of cell-free expression protocols are given in detail. We further provide specific protocols and parameters for the cell-free production of membrane proteins. High-throughput screening applications of CF expression systems are exemplified as new tools for genomics and proteomics studies.


Scientific Reports | 2015

A refined model of water and CO2 membrane diffusion: Effects and contribution of sterols and proteins

Lei Kai; Ralf Kaldenhoff

Black lipid bilayers, a general model system for biomembranes were studied for diffusion rates of small molecules such as water or CO2 using advanced analysis techniques and cell free synthesized proteins. We provide evidence that by simple insertion of proteins or sterols the diffusion rates of water or those of CO2 decrease. Insertion of cell free synthesized water permeable aquaporins restored water diffusion rates as well as insertion of CO2-facilitating aquaporins the CO2 diffusion. Insertion of water or CO2 impermeable proteins decreased the respective diffusion rates. Therefore, for normal high cellular CO2 diffusion rates specific aquaporins are mandatory.


Journal of Biological Chemistry | 2012

Functional Characterization of a Novel Aquaporin from Dictyostelium discoideum Amoebae Implies a Unique Gating Mechanism

Julia von Bülow; Annika Müller-Lucks; Lei Kai; Frank Bernhard; Eric Beitz

Background: Aquaporins are involved in osmoregulation and cell motility. Functional D. discoideum aquaporins are missing. Results: We characterized a putatively gated aquaporin from amoebae that localizes to vacuolar structures, the plasma membrane, and protrusions. Conclusion: Localization and gating hint at functions in osmoregulation and motility. Significance: We identified a novel player in basic physiology of the model organism D. discoideum. The social amoeba Dictyostelium discoideum is a widely used model organism for studying basic functions of protozoan and metazoan cells, such as osmoregulation and cell motility. There is evidence from other species that cellular water channels, aquaporins (AQP), are central to both processes. Yet, data on D. discoideum AQPs is almost absent. Despite cloning of two putative D. discoideum AQPs, WacA, and AqpA, water permeability has not been shown. Further, WacA and AqpA are expressed at the late multicellular stage and in spores but not in amoebae. We cloned a novel AQP, AqpB, from amoeboidal D. discoideum cells. Wild-type AqpB was impermeable to water, glycerol, and urea when expressed in Xenopus laevis oocytes. Neither stepwise truncation of the N terminus nor selected point mutations activated the water channel. However, mutational truncation by 12 amino acids of an extraordinary long intracellular loop induced water permeability of AqpB, hinting at a novel gating mechanism. This AqpB mutant was inhibited by mercuric chloride, confirming the presence of a cysteine residue in the selectivity filter as predicted by our structure model. We detected AqpB by Western blot analysis in a glycosylated and a non-glycosylated form throughout all developmental stages. When expressed in D. discoideum amoebae, AqpB-GFP fusion constructs localized to vacuolar structures, to the plasma membrane, and to lamellipodia-like membrane protrusions. We conclude that the localization pattern in conjunction with channel gating may be indicative of AqpB functions in osmoregulation as well as cell motility of D. discoideum.


Protein and Peptide Letters | 2008

Efficient Expression of Membrane-Bound Water Channel Protein (Aquaporin Z) in Escherichia coli

Jiazhang Lian; Xiangming Fang; Jin Cai; Qixing Chen; Qiang Zheng; Lei Kai; Zhinan Xu

In order to explore the possibility of preparing a high-efficiency aquaporin-based biofilter, an efficient approach for expression of membrane-bound Aquaporin Z (AqpZ) in E. coli was proposed. The AqpZ gene was amplified by means of PCR, and two expression vectors (pET28-AqpZ and pET32-AqpZ) were constructed. The channel protein of interest was synthesized in E. coli BL21(DE3)/pET32-AqpZ as an insoluble fusion protein linked with trxA. However, with BL21(DE3)/pET28-AqpZ, significant amount of AqpZ fused only with 6-His (6-His-AqpZ) could be expressed, correctly folded and targeted into the membrane. Under the optimized culture conditions, the highest expression level (9.05 mg/l) of membrane-bound 6-His-AqpZ was achieved with BL21(DE3)/pET28-AqpZ, and an additional amount (2.35 mg/l) was expressed concomitantly as the inclusion body form. This expression result was 3.5 times higher than that in the previous studies.


PLOS ONE | 2013

Artificial environments for the co-translational stabilization of cell-free expressed proteins

Lei Kai; Volker Dötsch; Ralf Kaldenhoff; Frank Bernhard

An approach for designing individual expression environments that reduce or prevent protein aggregation and precipitation is described. Inefficient folding of difficult proteins in unfavorable translation environments can cause significant losses of overexpressed proteins as precipitates or inclusion bodies. A number of chemical chaperones including alcohols, polyols, polyions or polymers are known to have positive effects on protein stability. However, conventional expression approaches can use such stabilizing agents only post-translationally during protein extraction and purification. Proteins that already precipitate inside of the producer cells cannot be addressed. The open nature of cell-free protein expression systems offers the option to include single chemicals or cocktails of stabilizing compounds already into the expression environment. We report an approach for systematic screening of stabilizers in order to improve the solubility and quality of overexpressed proteins co-translationally. A comprehensive list of representative protein stabilizers from the major groups of naturally occurring chemical chaperones has been analyzed and their concentration ranges tolerated by cell-free expression systems have been determined. As a proof of concept, we have applied the method to improve the yield of proteins showing instability and partial precipitation during cell-free synthesis. Stabilizers that co-translationally improve the solubility and functional folding of human glucosamine 6-phosphate N-acetyltransferase have been identified and cumulative effects of stabilizers have been studied.


Methods of Molecular Biology | 2014

High-level cell-free production of membrane proteins with nanodiscs.

Christian Roos; Lei Kai; Stefan Haberstock; Davide Proverbio; Umesh Ghoshdastider; Yi Ma; Slawomir Filipek; Xiaoning Wang; Volker Dötsch; Frank Bernhard

This chapter addresses two major bottlenecks in cell-free membrane protein production. Firstly, we describe the optimization of expression templates for obtaining membrane proteins in preparative scales. We present details for a newly established tag variation screen providing high success rates in improving expression efficiencies while having only minimal impacts on the target protein structure. Secondly, we present protocols for the efficient co-translational insertion of membrane proteins into defined lipid bilayers. We describe the production of nanodiscs and their implementation into cell-free expression reactions for the co-translational reconstitution of membrane proteins. In addition we give guidelines for the loading of nanodiscs with different lipids in order to systematically analyze effects of lipids on the translocation, functional folding, and stability of cell-free expressed membrane proteins.

Collaboration


Dive into the Lei Kai's collaboration.

Top Co-Authors

Avatar

Frank Bernhard

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Volker Dötsch

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Ralf Kaldenhoff

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Davide Proverbio

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Christian Roos

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Friederike Junge

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Mikhail Karbyshev

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Stefan Haberstock

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge