Ralf Kaldenhoff
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf Kaldenhoff.
Nature | 2003
Norbert Uehlein; Claudio Lovisolo; Franka Siefritz; Ralf Kaldenhoff
Aquaporins, found in virtually all living organisms, are membrane-intrinsic proteins that form water-permeable complexes. The mammalian aquaporin AQP1 has also shown CO2 permeability when expressed heterologously in Xenopus oocytes, although whether this is a biochemical curiosity or of physiological significance is a matter of debate. Here we report that, in the same expression system, a CO2 permeability comparable to that of the human AQP1 is observed for the tobacco plasma membrane aquaporin NtAQP1. NtAQP1 facilitates CO2 membrane transport in the homologous plant system at the cellular level, and has a significant function in photosynthesis and in stomatal opening. NtAQP1 overexpression heightens membrane permeability for CO2 and water, and increases leaf growth. The results indicate that NtAQP1-related CO2 permeability is of physiological importance under conditions where the CO2 gradient across a membrane is small, as is the case between the atmosphere and the inside of a plant cell.
The Plant Cell | 2002
Franka Siefritz; Melvin T. Tyree; Claudio Lovisolo; Andrea Schubert; Ralf Kaldenhoff
The molecular functions of several aquaporins are well characterized (e.g., by analysis of aquaporin-expressing Xenopus oocytes). However, their significance in the physiology of water transport in multicellular organisms remains uncertain. The tobacco plasma membrane aquaporin NtAQP1 was used to elucidate this issue. By comparing antisense plants that were inhibited in NtAQP1 expression with control plants, we found evidence for NtAQP1 function in cellular and whole-plant water relations. The consequences of a decrease in cellular water permeability were determined by measurement of transpiration rate and stem and leaf water potential as well as growth experiments under extreme soil water depletion. Plants impaired in NtAQP1 expression showed reduced root hydraulic conductivity and lower water stress resistance. In conclusion, our results emphasize the importance of symplastic aquaporin-mediated water transport in whole-plant water relations.
Journal of Experimental Botany | 2009
John R. Evans; Ralf Kaldenhoff; Bernard Genty; Ichiro Terashima
CO(2) faces a series of resistances while diffusing between the substomatal cavities and the sites of carboxylation within chloroplasts. The absence of techniques to measure the resistance of individual steps makes it difficult to define their relative importance. Resistance to diffusion through intercellular airspace differs between leaves, but is usually of minor importance. Leaves with high photosynthetic capacity per unit leaf area reduce mesophyll resistance by increasing the surface area of chloroplasts exposed to intercellular airspace per unit leaf area, S(c). Cell walls impose a significant resistance. Assuming an effective porosity of the cell wall of 0.1 or 0.05, then cell walls could account for 25% or 50% of the total mesophyll resistance, respectively. Since the fraction of apoplastic water that is unbound and available for unhindered CO(2) diffusion is unknown, it is possible that the effective porosity is <0.05. Effective porosity could also vary in response to changes in pH or cation concentration. Consequently, cell walls could account for >50% of the total resistance and a variable proportion. Most of the remaining resistance is imposed by one or more of the three membranes as mesophyll resistance can be altered by varying the expression of cooporins. The CO(2) permeability of vesicles prepared from chloroplast envelopes has been reduced by RNA interference (RNAi) expression of NtAQP1, but not those prepared from the plasma membrane. Carbonic anhydrase activity also influences mesophyll resistance. Mesophyll resistance is relatively insensitive to the manipulation of any step in the pathway because it represents only part of the total and may also be countered by pleiotropic compensatory changes. The parameters in greatest need of additional measurements are S(c), mesophyll cell wall thickness, and the permeabilities of the plasma membrane and chloroplast envelope.
The Plant Cell | 2008
Norbert Uehlein; Beate Otto; David T. Hanson; Matthias Fischer; Nate G. McDowell; Ralf Kaldenhoff
Photosynthesis is often limited by the rate of CO2 diffusion from the atmosphere to the chloroplast. The primary resistances for CO2 diffusion are thought to be at the stomata and at photosynthesizing cells via a combination resulting from resistances of aqueous solution as well as the plasma membrane and both outer and inner chloroplast membranes. In contrast with stomatal resistance, the resistance of biological membranes to gas transport is not widely recognized as a limiting factor for metabolic function. We show that the tobacco (Nicotiana tabacum) plasma membrane and inner chloroplast membranes contain the aquaporin Nt AQP1. RNA interference–mediated decreases in Nt AQP1 expression lowered the CO2 permeability of the inner chloroplast membrane. In vivo data show that the reduced amount of Nt AQP1 caused a 20% change in CO2 conductance within leaves. Our discovery of CO2 aquaporin function in the chloroplast membrane opens new opportunities for mechanistic examination of leaf internal CO2 conductance regulation.
Plant Cell and Environment | 2008
Ralf Kaldenhoff; Miquel Ribas-Carbo; Jaume Flexas Sans; Claudio Lovisolo; Marlies Heckwolf; Norbert Uehlein
The impact of aquaporin function on plant water balance is discussed. The significance of these proteins for root water uptake, water conductance in the xylem, including embolism refilling and the role of plant aquaporins in leaf physiology, is described. Emphasis is placed on certain aspects of water stress reactions and the correlation of aquaporins to abscisic acid as well as on the relation of water and CO2 permeability in leaves.
Plant Journal | 2011
Marlies Heckwolf; Dianne Pater; David T. Hanson; Ralf Kaldenhoff
Cellular exchange of carbon dioxide (CO₂) is of extraordinary importance for life. Despite this significance, its molecular mechanisms are still unclear and a matter of controversy. In contrast to other living organisms, plants are physiologically limited by the availability of CO₂. In most plants, net photosynthesis is directly dependent on CO₂ diffusion from the atmosphere to the chloroplast. Thus, it is important to analyze CO₂ transport with regards to its effect on photosynthesis. A mutation of the Arabidopsis thaliana AtPIP1;2 gene, which was characterized as a non-water transporting but CO₂ transport-facilitating aquaporin in heterologous expression systems, correlated with a reduction in photosynthesis under a wide range of atmospheric CO₂ concentrations. Here, we could demonstrate that the effect was caused by reduced CO₂ conductivity in leaf tissue. It is concluded that the AtPIP1;2 gene product limits CO₂ diffusion and photosynthesis in leaves.
Journal of Biological Chemistry | 2010
Beate Otto; Norbert Uehlein; Sven Sdorra; Matthias Fischer; Muhammad Ayaz; Xana Belastegui-Macadam; Marlies Heckwolf; Magdalena Lachnit; Nadine Pede; Nadine Priem; André Reinhard; Sven Siegfart; Michael Urban; Ralf Kaldenhoff
Heterologous expression in yeast cells revealed that NtAQP1, a member of the so-called PIP1 aquaporin subfamily, did not display increased water transport activity in comparison with controls. Instead, an increased CO2-triggered intracellular acidification was observed. NtPIP2;1, which belongs to the PIP2 subfamily of plant aquaporins, behaved as a true aquaporin but lacked a CO2-related function. Results from split YFP experiments, protein chromatography, and gel electrophoresis indicated that the proteins form heterotetramers when coexpressed in yeast. Tetramer composition had effects on transport activity as demonstrated by analysis of artificial heterotetramers with a defined proportion of NtAQP1 to NtPIP2;1. A single NtPIP2;1 aquaporin in a tetramer was sufficient to significantly increase the water permeability of the respective yeast cells. With regard to CO2-triggered intracellular acidification, a cooperative effect was observed, where maximum rates were measured when the tetramer consisted of NtAQP1 aquaporins only. The results confirm the model of an aquaporin monomer as a functional unit for water transport and suggest that, for CO2-related transport processes, a structure built up by the tetramer is the basis of this function.
Planta | 2005
Zaklina Marjanovic; Norbert Uehlein; Ralf Kaldenhoff; Janusz J. Zwiazek; Michael Weiss; Rüdiger Hampp; Uwe Nehls
The formation of ectomycorrhizas, a tight association between fine roots of trees and certain soil fungi, improves plant nutrition in a nutrient-limited environment and may increase plant survival under water stress conditions. To investigate the impact of mycorrhiza formation on plant water uptake, seven genes coding for putative water channel proteins (aquaporins) were isolated from a poplar ectomycorrhizal cDNA library. Four out of the seven genes were preferentially expressed in roots. Mycorrhiza formation resulted in an increased transcript level for three of these genes, two of which are the most prominently expressed aquaporins in roots. When expressed in Xenopus laevis oocytes, the corresponding proteins of both genes were able to transport water. Together, these data indicate, that the water transport capacity of the plasma membrane of root cells is strongly increased in mycorrhized plants. Measurements of the hydraulic conductance of intact root systems revealed an increased water transport capacity of mycorrhized poplar roots. These data, however, also indicate that changes in the properties of the plasma membrane as well as those of the apoplast are responsible for the increased root hydraulic conductance in ectomycorrhizal symbiosis.
Acta Physiologica | 2006
Ralf Kaldenhoff; Matthias Fischer
Although very often exposed to a rapid changing environment, plants are in general unable to evade from unfavourable conditions. Therefore, a fine tuned adaptation of physiology including the water balance appears to be of crucial importance. As a consequence a relatively large number of aquaporin genes are present in plant genomes. So far aquaporins in plants were shown to be involved in root water uptake, reproduction or photosynthesis. Accordingly, plant aquaporin classification as simple water pores has changed corresponding to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the respective physiological process could be achieved by regulation mechanisms, which range from post‐translational modification, molecular trafficking to heteromerization of aquaporin isoforms. Here the function of the four plant aquaporin family subclasses with regard to substrate specificity, regulation and physiological relevance is described.
Plant Physiology | 2006
Stefan Lunkenbein; MariLuz Bellido; Asaph Aharoni; Elma M. J. Salentijn; Ralf Kaldenhoff; Heather A. Coiner; Juan Muñoz-Blanco; Wilfried Schwab
Strawberry (Fragaria × ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria × ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.