Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lei Wu is active.

Publication


Featured researches published by Lei Wu.


Langmuir | 2013

Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling.

Lei Wu; Lin Liu; Bin Gao; Rafael Muñoz-Carpena; Ming Zhang; Hao Chen; Zuhao Zhou; Hao Wang

Although graphene oxide (GO) has been used in many applications to improve human life quality, its environmental fate and behavior are still largely unknown. In this work, a novel approach that combines experimental measurements and theoretical calculations was used to determine the aggregation kinetics of GO sheets in aqueous solutions under different chemistry conditions (e.g., cation valence and pH). Experimental data showed that both cation valence and pH showed significant effect on the aggregation of GO sheets. The measured critical coagulation concentrations were in good agreement with the predictions of the extended Schulze-Hardy rule. Ca(2+) and Mg(2+) were more effective than Na(+) in aggregating the GO sheets, which could be attributed to the cross-linking between GO sheets by the divalent cations through bridging the functional groups at the edges of the GO sheets. When solution pH increases, deprotonation of carboxylic groups was found to play a key role in increasing GO sheet stability and surface charge development. These results suggested that edge-to-edge and face-to-face interactions were the dominant modes of GO aggregation in the presence of divalent metal ions and H(+), respectively. A modified attachment efficiency (α) model was developed on the basis of the Maxwell approach with considerations of both primary and secondary minima. The model predictions matched the experimental measurements of the aggregation kinetics of GO sheets in aqueous solutions under all of the tested experimental conditions well.


Journal of Hazardous Materials | 2012

Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media

Yuan Tian; Bin Gao; Lei Wu; Rafael Muñoz-Carpena; Qingguo Huang

There are increasing concerns over the environmental impact and health risks of carbon nanotubes (CNTs) because they may be released into soil and groundwater systems. The present work systematically investigated the transport, deposition, and mobilization behaviors of multi-walled carbon nanotubes (MWNTs) in saturated columns packed with acid-cleaned glass beads and quartz sand of two different grain sizes. Combined effects of pH (5.6 and 10) and ionic strength (IS: DI water, 1mM, and 10mM) on the fate and transport of the MWNTs in the columns were examined. MWNTs were relatively mobile in all the tested conditions with DI water as the experimental solution. Their deposition in the saturated porous media, however, was very sensitive to solution chemistry, particularly IS. Slight increase in solution IS (1 mM) caused strong deposition of MWNTs in both quartz sand (>44%) and glass beads (>39%). Mobilization experimental results indicated that most of the MWNT attachment (>73%) to the porous media was irreversible and reduction in solution IS only caused a small portion of re-entrainment (<27%) of deposited MWNT for all the tested conditions. This indicates that more MWNTs are trapped in the primary minimum, although the deposition of MWNTs in saturated porous media occurs in both primary and secondary minimum. It is suggested that, under unfavorable conditions, weak associated MWNTs in the secondary minimum may be transferred into the primary minimum due to the effect of hydrodynamic force and/or local favorable sites associated with surface heterogeneity.


Journal of Nanoparticle Research | 2012

Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

Yu Wang; Bin Gao; Verónica L. Morales; Yuan Tian; Lei Wu; Jie Gao; Wei Bai; Liuyan Yang

Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.


Journal of Hazardous Materials | 2012

Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media.

Yuan Tian; Bin Gao; Verónica L. Morales; Yu Wang; Lei Wu

This work investigated the effect of different surface modification methods, including oxidization, surfactant coating, and humic acid coating, on single-walled carbon nanotube (SWNT) stability and their mobility in granular porous media under various conditions. Characterization and stability studies demonstrated that the three surface modification methods were all effective in solubilizing and stabilizing the SWNTs in aqueous solutions. Packed sand column experiments showed that although the three surface medication methods showed different effect on the retention and transport of SWNTs in the columns, all the modified SWNTs were highly mobile. Compared with the other two surface modification methods, the humic acid coating method introduced the highest mobility to the SWNTs. While reductions in moisture content in the porous media could promote the retention of the surface modified SWNTs in some sand columns, results from bubble column experiment suggested that only oxidized SWNTs were retention in unsaturated porous media through attachment on air-water interfaces. Other mechanisms such as grain surface attachment and thin-water film straining could also be responsible for the retention of the SWNTs in unsaturated porous media. An advection-dispersion model was successfully applied to simulate the experimental data of surface modified SWNT retention and transport in porous media.


Langmuir | 2013

DLVO Interactions of Carbon Nanotubes with Isotropic Planar Surfaces

Lei Wu; Bin Gao; Yuan Tian; Rafael Muñoz-Carpena; Kirk J. Zigler

Knowledge of the interaction between carbon nanotubes (CNTs) and planar surfaces is essential to optimizing CNT applications as well as reducing their environmental impact. In this work, the surface element integration (SEI) technique was coupled with the DLVO theory to determine the orientation-dependent interaction energy between a single-walled carbon nanotube (SWNT) and an infinite isotropic planar surface. For the first time, an analytical formula was developed to describe accurately the interaction between not only pristine but also surface-charged CNTs and planar surfaces with arbitrary rotational angles. Compared to other methods, the new analytical formulas were either more convenient or more accurate in describing the interaction between CNTs and planar surfaces, especially with respect to arbitrary angles. The results revealed the complex dependences of both force and torque between SWNTs and planar surfaces on the separation distances and rotational angles. With minor modifications, the analytical formulas derived for SWNTs can also be applied to multiwalled carbon nanotubes (MWNTs). The new analytical expressions presented in this work can be used as a robust tool to describe the DLVO interaction between CNTs and planar surfaces under various conditions and thus to assist in the design and application of CNT-based products.


Journal of Colloid and Interface Science | 2014

Heteroaggregation of microparticles with nanoparticles changes the chemical reversibility of the microparticles’ attachment to planar surfaces

Chongyang Shen; Lei Wu; Shiwen Zhang; Huichun Ye; Baoguo Li; Yuanfang Huang

n Abstractn n This study theoretically investigated detachment of homoaggregates and heteroaggregates attached on the planar surfaces at primary minima during transients in solution chemistry. The homoaggregates were represented as small colloidal clusters with well-defined structures or as clusters generated by randomly packing spheres using Monte Carlo method. The heteroaggregates were modeled as microparticles coated with nanoparticles. Surface element integration technique was adopted to calculate Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energies for the homoaggregates and heteroaggregates at different ionic strengths. Results show that attached homoaggregates on the planar surface at primary minima are irreversible to reduction in solution ionic strength whether the primary spheres of the homoaggregates are nano- or micro-sized. Heteroaggregation of nanoparticles with a microparticle can cause DLVO interaction energy to decrease monotonically with separation distance at low ionic strengths (e.g., ⩽0.01M), indicating that the heteroaggregates experience repulsive forces at all separation distances. Therefore, attachment of the heteroaggregates at primary minima can be detached upon reduction in ionic strength. Additionally, we showed that the adhesive forces and torques that the aforementioned heteroaggregates experience can be significantly smaller than those experienced by the microspheres without attaching nanoparticles, thus, the heteroaggregates are readily detached via hydrodynamic drag. Results of study provide plausible explanation for the observations in the literature that attached/aggregated particles can be detached/redispersed from primary minima upon reduction in ionic strength, which challenges the common belief that attachment/aggregation of particles in primary minima is chemically irreversible.n n


Journal of Nanoparticle Research | 2013

Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media

Lin Liu; Bin Gao; Lei Wu; Liuyan Yang; Zuhao Zhou; Hao Wang

This work investigated the effects of solution pH and surface metal oxyhydroxides on the transport behaviors of carboxyl-functionalized graphene (GR) in saturated porous media. Column experiments were conducted to elucidate the transport behavior of functionalized GR in acid-cleaned and natural sand under different solution pH conditions (i.e., 5.6 and 8.3). The results showed that the functionalized GR was highly mobile in the acid-cleaned sand columns at both pH 5.6 and 8.3 with recovery rates close to 100xa0%. The deposition of the functionalized GR was higher in the natural sand columns, and the recovery rates were 88.4 and 96.5xa0% for pH 5.6 and 8.3, respectively. The reductions of the mobility of the functionalized GR in the natural sand columns could be caused by the interaction between carboxyl functional groups of the GR and the surface metal hydroxides on the sand grains, which is pH dependent. An advection–dispersion-reaction model was applied to the data and successfully simulated the transport of the functionalized GR through the acid-cleaned and natural sand columns.


Environmental Science & Technology | 2014

Colloid Filtration in Surface Dense Vegetation: Experimental Results and Theoretical Predictions

Lei Wu; Rafael Muñoz-Carpena; Bin Gao; Wen Yang; Yakov A. Pachepsky

Understanding colloid and colloid-facilitated contaminant transport in overland flow through dense vegetation is important to protect water quality in the environment, especially for water bodies receiving agricultural and urban runoff. In previous studies, a single-stem efficiency theory for rigid and clean stem systems was developed to predict colloid filtration by plant stems of vegetation in laminar overland flow. Hence, in order to improve the accuracy of the single-stem efficiency theory to real dense vegetation system, we incorporated the effect of natural organic matter (NOM) on the filtration of colloids by stems. Laboratory dense vegetation flow chamber experiments and model simulations were used to determine the kinetic deposition (filtration) rate of colloids under various conditions. The results show that, in addition to flow hydrodynamics and solution chemistry, steric repulsion afforded by NOM layer on the plants stem surface also plays a significant role in controlling colloid deposition on vegetation in overland flow. For the first time, a refined single-stem efficiency theory with considerations of the NOM effect is developed that describes the experimental data with good accuracy. This theory can be used to not only help construct and refine mathematical models of colloid transport in real vegetation systems in overland flow, but also inform the development of theories of colloid deposition on NOM-coated surfaces in natural, engineered, and biomedical systems.


Environmental Science & Technology | 2012

Single collector attachment efficiency of colloid capture by a cylindrical collector in laminar overland flow.

Lei Wu; Bin Gao; Rafael Muñoz-Carpena; Yakov A. Pachepsky

Little research has been conducted to investigate the fate and transport of colloids in shallow overland flow through dense vegetation under unfavorable chemical conditions. In this work, the single collector attachment efficiency (α) of colloid capture by a simulated plant stem (i.e., cylindrical collector) in laminar overland flow was measured directly in laboratory flow chamber experiments. Fluorescent microspheres of two sizes were used as experimental colloids. The colloid suspensions flowed toward a glass cylindrical rod installed in a small size flow channel at different laminar flow rates. Different solution ionic strengths (IS) were used in the experiments to simulate unfavorable attachment conditions. Our results showed that α increased with IS and decreased with flow velocity. Existing theoretical and empirical models of colloid attachment efficiency for porous media were used to simulate the experimental measurements in α and found to fall short in matching the experimental data. A new dimensionless (regression) equation was proposed that predicts the α of colloid capture by a cylindrical collector in laminar overland flow with reasonable accuracy. In addition, the equation was also effective in predicting the attachment efficiency of colloid deposition in porous media.


Environmental Science & Technology | 2011

Experimental Analysis of Colloid Capture by a Cylindrical Collector in Laminar Overland Flow

Lei Wu; Bin Gao; Rafael Muñoz-Carpena

Although colloid-facilitated contaminant transport in water flow is a well-known contamination process, little research has been conducted to investigate the transport of colloidal particles through emergent vegetation in overland flow. In this work, a series of laboratory experiments were conducted to measure the single-collector contact efficiency (η(0)) of colloid capture by a simulated plant stem in laminar lateral flow. Fluorescent microspheres of various sizes were used as experimental colloids. The colloid suspensions were applied to a glass cylinder installed in a small size flow chamber at different flow rates. Two cylinder sizes were tested in the experiment and silicone grease was applied to the cylinder surface to make it favorable for colloid deposition. Our results showed that increases in flow rate and collector size reduced the value of η(0) and a minimum value of η(0) might exist for a colloid size. The experimental data were compared to theoretical predictions of different single-collector contact efficiency models. The results indicated that existing single-collector contact efficiency models underestimated the η(0) of colloid capture by the cylinders in laminar overland flow. A regression equation of η(0) as a function of collector Reynolds number (Re(c)) and Peclet number (N(Pe)) was developed and fit the experimental data very well (R(2) > 0.98). This regression equation can be used to help construct and refine mathematical models of colloid transport and filtration in laminar overland flow on vegetated surfaces.

Collaboration


Dive into the Lei Wu's collaboration.

Top Co-Authors

Avatar

Bin Gao

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Tian

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Lin Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Hao Chen

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Zhang

China Jiliang University

View shared research outputs
Top Co-Authors

Avatar

Hao Wang

Ministry of Water Resources

View shared research outputs
Researchain Logo
Decentralizing Knowledge