Leigh Ann Samsa
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leigh Ann Samsa.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2011
Yu Wang; Rashmi Chandra; Leigh Ann Samsa; Barry Gooch; Brian E. Fee; J. Michael Cook; Steven R. Vigna; Augustus O. Grant
Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release. However, the cellular mechanism by which amino acids affect CCK secretion is unknown. The Ca(2+)-sensing receptor (CaSR) that was originally identified on parathyroid cells is not only sensitive to extracellular Ca(2+) but is activated by extracellular aromatic amino acids. It has been postulated that this receptor may be involved in gastrointestinal hormone secretion. Using transgenic mice expressing a CCK promoter driven/enhanced green fluorescent protein (GFP) transgene, we have been able to identify and purify viable intestinal CCK cells. Intestinal mucosal CCK cells were enriched >200-fold by fluorescence-activated cell sorting. These cells were then used for real-time PCR identification of CaSR. Immunohistochemical staining with an antibody specific for CaSR confirmed colocalization of CaSR to CCK cells. In isolated CCK cells loaded with a Ca(2+)-sensitive dye, the amino acids phenylalanine and tryptophan, but not nonaromatic amino acids, caused an increase in intracellular Ca(2+) ([Ca(2+)](i)). The increase in [Ca(2+)](i) was blocked by the CaSR inhibitor Calhex 231. Phenylalanine and tryptophan stimulated CCK release from intestinal CCK cells, and this stimulation was also blocked by CaSR inhibition. Electrophysiological recordings from isolated CCK-GFP cells revealed these cells to possess a predominant outwardly rectifying potassium current. Administration of phenylalanine inhibited basal K(+) channel activity and caused CCK cell depolarization, consistent with changes necessary for hormone secretion. These findings indicate that amino acids have a direct effect on CCK cells to stimulate CCK release by activating CaSR and suggest that CaSR is the physiological mechanism through which amino acids regulate CCK secretion.
PLOS ONE | 2014
Diego V. Bohórquez; Leigh Ann Samsa; Andrew Roholt; Rashmi Chandra
The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY – both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia – the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.
American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2013
Leigh Ann Samsa; Betsy Yang; Jiandong Liu
Congenital heart diseases are some of the most common human birth defects. Though some congenital heart defects can be surgically corrected, treatment options for other congenital heart diseases are very limited. In many congenital heart diseases, genetic defects lead to impaired embryonic heart development or growth. One of the key development processes in cardiac development is chamber maturation, and alterations in this maturation process can manifest as a variety of congenital defects including non‐compaction, systolic dysfunction, diastolic dysfunction, and arrhythmia. During development, to meet the increasing metabolic demands of the developing embryo, the myocardial wall undergoes extensive remodeling characterized by the formation of muscular luminal protrusions called cardiac trabeculae, increased cardiomyocyte mass, and development of the ventricular conduction system. Though the basic morphological and cytological changes involved in early heart development are clear, much remains unknown about the complex biomolecular mechanisms governing chamber maturation. In this review, we highlight evidence suggesting that a wide variety of basic signaling pathways and biomechanical forces are involved in cardiac wall maturation.
Development | 2015
Leigh Ann Samsa; Chris Givens; Eleni Tzima; Didier Y. R. Stainier; Li Qian; Jiandong Liu
Congenital heart disease often features structural abnormalities that emerge during development. Accumulating evidence indicates a crucial role for cardiac contraction and the resulting fluid forces in shaping the heart, yet the molecular basis of this function is largely unknown. Using the zebrafish as a model of early heart development, we investigated the role of cardiac contraction in chamber maturation, focusing on the formation of muscular protrusions called trabeculae. By genetic and pharmacological ablation of cardiac contraction, we showed that cardiac contraction is required for trabeculation through its role in regulating notch1b transcription in the ventricular endocardium. We also showed that Notch1 activation induces expression of ephrin b2a (efnb2a) and neuregulin 1 (nrg1) in the endocardium to promote trabeculation and that forced Notch activation in the absence of cardiac contraction rescues efnb2a and nrg1 expression. Using in vitro and in vivo systems, we showed that primary cilia are important mediators of fluid flow to stimulate Notch expression. Together, our findings describe an essential role for cardiac contraction-responsive transcriptional changes in endocardial cells to regulate cardiac chamber maturation. Highlighted article: Cardiac contraction, which is sensed by primary cilia, activates Notch signaling in the endocardium to control ventricular trabeculation and maturation during heart development in zebrafish.
Journal of Molecular Histology | 2011
Diego V. Bohórquez; Rashmi Chandra; Leigh Ann Samsa; Steven R. Vigna
The peptide tyrosine tyrosine (PYY) is produced and secreted from L cells of the gastrointestinal mucosa. To study the anatomy and function of PYY-secreting L cells, we developed a transgenic PYY-green fluorescent protein mouse model. PYY-containing cells exhibited green fluorescence under UV light and were immunoreactive to antibodies against PYY and GLP-1 (glucagon-like peptide-1, an incretin hormone also secreted by L cells). PYY-GFP cells from 15 μm thick sections were imaged using confocal laser scanning microscopy and three-dimensionally (3D) reconstructed. Results revealed unique details of the anatomical differences between ileal and colonic PYY-GFP cells. In ileal villi, the apical portion of PYY cells makes minimal contact with the lumen of the gut. Long pseudopod-like basal processes extend from these cells and form an interface between the mucosal epithelium and the lamina propria. Some basal processes are up to 50 μm in length. Multiple processes can be seen protruding from one cell and these often have a terminus resembling a synapse that appears to interact with neighboring cells. In colonic crypts, PYY-GFP cells adopt a spindle-like shape and weave in between epithelial cells, while maintaining contact with the lumen and lamina propria. In both tissues, cytoplasmic granules containing the hormones PYY and GLP-1 are confined to the base of the cell, often filling the basal process. The anatomical arrangement of these structures suggests a dual function as a dock for receptors to survey absorbed nutrients and as a launching platform for hormone secretion in a paracrine fashion.
Cell and Tissue Research | 2010
Rashmi Chandra; Leigh Ann Samsa; Steven R. Vigna
Cholecystokinin (CCK) is secreted by neuroendocrine cells comprising 0.1%-0.5% of the mucosal cells in the upper small intestine. Using CCK promoter-driven green fluorescent protein (GFP) expression in transgenic mice, we have applied immunofluorescence techniques to analyze the morphology of CCK cells. GFP and CCK colocalize in neuroendocrine cells with little aberrant GFP expression. CCK-containing cells are either flask- or spindle-shaped, and in some cells, we have found dendritic processes similar to pseudopods demonstrated for gut somatostatin-containing D cells. Most pseudopods are short, the longest process visualized extending across three cells. Pseudopods usually extend to adjacent cells but some weave between neighboring cells. Dual processes have also been observed. Three-dimensional reconstructions suggest that processes are not unidirectional and thus are unlikely to be involved in migration of CCK cells from the crypt up the villus. Abundant CCK immunostaining is present in the pseudopods, suggesting that they release CCK onto the target cell. In order to identify the type of cells being targeted, we have co-stained sections with antibodies to chromogranin A, trefoil factor-3, and sucrase-isomaltase. CCK cell processes almost exclusively extend to sucrase-isomaltase-positive enterocytes. Thus, CCK cells have cellular processes possibly involved in paracrine secretion.
Journal of Cardiovascular Development and Disease | 2016
Daniel Ross Brown; Leigh Ann Samsa; Li Qian; Jiandong Liu
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications.
Nature Communications | 2016
Kevin P. Mouillesseaux; David S. Wiley; Lauren M. Saunders; Lyndsay A. Wylie; Erich J. Kushner; Diana C. Chong; Kathryn M. Citrin; Andrew T. Barber; Youngsook Park; Jun Dae Kim; Leigh Ann Samsa; Jongmin Kim; Jiandong Liu; Suk-Won Jin; Victoria L. Bautch
Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation.
Circulation-cardiovascular Genetics | 2017
Gloria T. Haskell; Brian C. Jensen; Leigh Ann Samsa; Daniel S. Marchuk; Wei Huang; Cécile Skrzynia; Christian Tilley; Bryce A. Seifert; Edgar A. Rivera-Muñoz; Beverly Koller; Kirk C. Wilhelmsen; Jiandong Liu; Hassan Alhosaini; Karen E. Weck; James P. Evans; Jonathan S. Berg
Background— The genetic variation underlying many heritable forms of cardiovascular disease is incompletely understood, even in patients with strong family history or early age at onset. Methods and Results— We used whole exome sequencing to detect pathogenic variants in 55 patients with suspected monogenic forms of cardiovascular disease. Diagnostic analysis of established disease genes identified pathogenic variants in 21.8% of cases and variants of uncertain significance in 34.5% of cases. Three patients harbored heterozygous nonsense or splice-site variants in the nucleoporin genes NUP37, NUP43, and NUP188, which have not been implicated previously in cardiac disease. We also identified a heterozygous splice site variant in the nuclear envelope gene SYNE1 in a child with severe dilated cardiomyopathy that underwent transplant, as well as in his affected father. To confirm a cardiovascular role for these candidate genes in vivo, we used morpholinos to reduce SYNE1, NUP37, and NUP43 gene expression in zebrafish. Morphant embryos displayed cardiac abnormalities, including pericardial edema and heart failure. Furthermore, lymphoblasts from the patient carrying a SYNE1 splice-site variant displayed changes in nuclear morphology and protein localization that are consistent with disruption of the nuclear envelope. Conclusions— These data expand the repertoire of pathogenic variants associated with cardiovascular disease and validate the diagnostic and research use of whole exome sequencing. We identify NUP37, NUP43, and NUP188 as novel candidate genes for cardiovascular disease, and suggest that dysfunction of the nuclear envelope may be an under-recognized component of inherited cardiac disease in some cases.
PLOS ONE | 2016
Leigh Ann Samsa; Cade Ito; Daniel Ross Brown; Li Qian; Jiandong Liu
The Neuregulin-1 (Nrg1) signaling pathway has been widely implicated in many aspects of heart development including cardiac trabeculation. Cardiac trabeculation is an important morphogenetic process where clusters of ventricular cardiomyocytes extrude and expand into the lumen of the ventricular chambers. In mouse, Nrg1 isoforms containing an immunoglobulin-like (IgG) domain are essential for cardiac trabeculation through interaction with heterodimers of the epidermal growth factor-like (EGF-like) receptors ErbB2/ErbB4. Recent reports have underscored the importance of Nrg1 signaling in cardiac homeostasis and disease, however, placental development has precluded refined evaluation of the role of this pathway in mammals. ErbB2 has been shown to have a developmentally conserved role in cardiac trabeculation in zebrafish, a vertebrate model organism with completely external development, but the requirement for Nrg1 has not been examined. We found that among the multiple Nrg1 isoforms, the IgG domain-containing, type I Nrg1 (nrg1-I) is the only isoform detectable in the heart. Then, using CRISPR/Cas9 gene editing, we targeted the IgG domain of Nrg1 to produce novel alleles, nrg1nc28 and nrg1nc29, encoding nrg1-I and nrg1-II truncations. Our results indicated that zebrafish deficient for nrg1-I developed trabeculae in an ErbB2-dependent manner. Further, these mutants survive to reproductive adulthood with no overt cardiovascular defects. We also found that additional EGF-like ligands were expressed in the zebrafish heart during development of trabeculae. Together, these results suggest that Nrg1 is not the primary effector of trabeculation and/or that other EGF-like ligand(s) activates the ErbB2/ErbB4 pathway, either through functioning as the primary ligand or acting in a redundant manner. Overall, our work provides an example of cross-species differences in EGF family member requirements for an evolutionary conserved process.