Leigh R. Martin
Idaho National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leigh R. Martin.
Inorganic Chemistry | 2008
Bruce J. Mincher; Leigh R. Martin; Nicholas C. Schmitt
Higher oxidation states of americium have long been known; however, options for their preparation in acidic solution are limited. The conventional choice, silver-catalyzed peroxydisulfate, is not useful at nitric acid concentrations above about 0.3 M. We investigated the use of sodium bismuthate as an oxidant for Am (3+) in acidic solution. Room-temperature oxidation produced AmO 2 (2+) quantitatively, whereas oxidation at 80 degrees C produced AmO 2 (+) quantitatively. The efficacy of the method for the production of oxidized americium was verified by fluoride precipitation and by spectroscopic absorbance measurements. We performed absorbance measurements using a conventional 1 cm cell for high americium concentrations and a 100 cm liquid waveguide capillary cell for low americium concentrations. Extinction coefficients for the absorbance of Am (3+) at 503 nm, AmO 2 (+) at 514 nm, and AmO 2 (2+) at 666 nm in 0.1 M nitric acid are reported. We also performed solvent extraction experiments with the hexavalent americium using the common actinide extraction ligand tributyl phosphate (TBP) for comparison to the other hexavalent actinides. Contact with 30% tributyl phosphate in dodecane reduced americium; it was nevertheless extracted using short contact times. The TBP extraction of AmO 2 (2+) over a range of nitric acid concentrations is shown for the first time and was found to be analogous to that of uranyl, neptunyl, and plutonyl ions.
Journal of Physical Chemistry A | 2008
Bruce J. Mincher; Stephen P. Mezyk; Leigh R. Martin
Tributyl phosphate (TBP) is the most common organic compound used in liquid-liquid separations for the recovery of uranium, neptunium, and plutonium from acidic nuclear fuel dissolutions. The goal of these processes is to extract the actinides while leaving fission products in the acidic, aqueous phase. However, the radiolytic degradation of TBP has been shown to reduce separation factors of the actinides from fission products and to impede the back-extraction of the actinides during stripping. As most previous investigations of the radiation chemistry of TBP have focused on steady state radiolysis and stable product identification, with dibutylphosphoric acid (HDBP) invariably being the major product, here we have determined room temperature rate constants for the reactions of TBP and HDBP with the hydroxyl radical [(5.00 +/- 0.05) x 10(9), (4.40 +/- 0.13) x 10(9) M(-1) s(-1)], hydrogen atom [(1.8 +/-0.2) x 10(8), (1.1 +/- 0.1) x 10(8) M(-1) s(-1)], nitrate radical [(4.3 +/- 0.7) x 10(6), (2.9 +/- 0.2) x 10(6) M(-1) s(-1)], and nitrite radical (<2 x 10 (5), <2 x 10(5) M(-1) s(-1)), respectively. These data are used to discuss the mechanism of TBP radical-induced degradation.
Inorganic Chemistry | 2011
Guoxin Tian; Leigh R. Martin; Zhiyong Zhang; Linfeng Rao
Stability constants of two DTPA (diethylenetriaminepentaacetic acid) complexes with lanthanides (ML(2-) and MHL(-), where M stands for Nd and Eu and L stands for diethylenetriaminepentaacetate) at 10, 25, 40, 55, and 70 °C were determined by potentiometry, absorption spectrophotometry, and luminescence spectroscopy. The enthalpies of complexation at 25 °C were determined by microcalorimetry. Thermodynamic data show that the complexation of Nd(3+) and Eu(3+) with DTPA is weakened at higher temperatures, a 10-fold decrease in the stability constants of ML(2-) and MHL(-) as the temperature is increased from 10 to 70 °C. The effect of temperature is consistent with the exothermic enthalpy of complexation directly measured by microcalorimetry. Results by luminescence spectroscopy and density functional theory (DFT) calculations suggest that DTPA is octa-dentate in both the EuL(2-) and EuHL(-) complexes and, for the first time, the coordination mode in the EuHL(-) complex was clarified by integration of the experimental data and DFT calculations. In the EuHL(-) complex, the Eu is coordinated by an octa-dentate H(DTPA) ligand and a water molecule, and the protonation occurs on the oxygen of a carboxylate group.
Inorganic Chemistry | 2010
Guoxin Tian; Leigh R. Martin; Linfeng Rao
The complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy, and microcalorimetry. The stability constants of three successive lactate complexes (ML(2+), ML(2)(+), and ML(3)(aq), where M stands for Nd and Eu and L stands for lactate) at 10, 25, 40, 55, and 70 °C were determined. The enthalpies of complexation at 25 °C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd(3+) and Eu(3+)) with lactate is exothermic and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated α-hydroxyl group of lactate participates in the complexation.
Solvent Extraction and Ion Exchange | 2012
Bruce J. Mincher; Leigh R. Martin; Nicholas C. Schmitt
The separation of hexavalent americium from the lanthanides in simulated PUREX raffinate solution using 1 M diamylamylphosphonate in dodecane extraction was investigated. Hexavalent americium was prepared using room-temperature sodium bismuthate oxidation. Under these conditions the majority of the lanthanides were not oxidized and remained inextractable. A separation factor of ∼50 was provided for americium from europium over the nitric acid concentration range 6–7 M. Cerium was the exception with oxidation to CeIV resulting in its co-extraction with AmVI. However, since americium is readily reduced to AmIII it was easily stripped with a dilute acidic solution of hydrogen peroxide. Although hydrogen peroxide also reduces cerium, it does so slowly, and a selective americium strip was achieved, with a separation factor of as high as 35. Alternatively, since americium spontaneously reduced in the loaded organic phase, samples allowed to stand for 2 hours could be selectively stripped of americium by contact with 1 M HNO3 containing no additional reagents. Further, the separation was demonstrated using solutions containing macro-amounts of cerium and americium. The implications for use in fuel cycle separations are discussed.
Journal of Physical Chemistry A | 2009
Leigh R. Martin; Stephen P. Mezyk; Bruce J. Mincher
Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer and to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH approximately 3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid this rate constant is given by the following equation: ln k(1) = (23.85 +/- 0.19) - (1120 +/- 54)/T, corresponding to an activation energy of 9.31 +/- 0.45 kJ mol(-1) and a room temperature reaction rate constant of (5.24 +/- 0.35) x 10(8) M(-1) s(-1) (24.0 degrees C). For the lactate ion, the temperature-dependent rate constant is given by ln k(2) = (24.83 +/- 0.14) - (1295 +/- 42)/T, for an activation energy of 10.76 +/- 0.35 kJ mol(-1) and a room temperature value of (7.77 +/- 0.50) x 10(8) M(-1) s(-1) (22.2 degrees C). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pK(a) value, allowing thermodynamic parameters for the acid dissociation to be calculated as DeltaH(o) = -10.75 +/- 1.77 kJ mol(-1), DeltaS(o) = -103.9 +/- 6.0 J K(-1) mol(-1) and DeltaG(o) = 20.24 +/- 2.52 kJ mol(-1) at low ionic strength.
Solvent Extraction and Ion Exchange | 2010
Peter R. Zalupski; R. S. Herbst; Lætitia H. Delmau; Leigh R. Martin; Dean R. Peterman; Ken Nash
Abstract Thermochemical characterization of the partitioning of cesium and strontium from nitric acid solutions into mixtures of the acid form of chlorinated cobalt dicarbollide (H+CCD−) and polyethylene glycol (PEG-400) in FS-13 diluent has been completed using isothermal titration microcalorimetry and radiotracer distribution methods. The phase transfer reaction for Cs+ is a straightforward (H+ for Cs+) cation exchange reaction. In contrast, the extraction of Sr2+ does not proceed in the absence of the co-solvent molecule PEG-400. This molecule is believed to facilitate the dehydration of the Sr2+ aquo cation to overcome its resistance to partitioning. The phase transfer reactions for both Cs+ and Sr2+ are enthalpy driven (exothermic), but partially compensated by an unfavorable entropy. The results of the calorimetry studies suggest that the PEG-400 functions as a stoichiometric phase transfer reagent rather than acting simply as a phase transfer catalyst or phase modifier. The calorimetry results also demonstrate that the extraction of Sr2+ is complex, including evidence for both the partitioning of Sr(NO3)+ and endothermic ion pairing interactions in the organic phase that contribute to the net enthalpic effect. The thermodynamics of the liquid-liquid distribution equilibria are discussed mainly considering the basic features of the ion solvation thermochemistry.
Solvent Extraction and Ion Exchange | 2014
Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin
TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from the minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of the monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0–2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. This process balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. In this study, the aqueous phase has been modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2), and separations were performed without any effect on phase-transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6–3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.
Radiochimica Acta | 2013
Bruce J. Mincher; Martin Precek; Stephen P. Mezyk; Gracy Elias; Leigh R. Martin; Alena Paulenova
Abstract The redox chemistry of neptunium in irradiated 4 M nitric acid was investigated using γ-ray irradiation and UV/Vis spectroscopic measurements. Irradiation caused changes in the abundances of Np(V) and Np(VI) regardless of the initial fractional components of these oxidation states. At low absorbed doses Np(V) was oxidized to Np(VI) in irradiated solution, due to its reaction with oxidizing, radiolytically-produced, free radicals. However, when sufficient radiolytically-produced nitrous acid accumulated, the reduction of Np(VI) to Np(V) occurred, even at this high nitric acid concentration. Neptunium(IV) was not produced. A kinetic model which incorporates the standard water radiolysis reactions, estimated radical yields for 4 M HNO3, and rate constants for neptunium reactions available from the literature was used to successfully reproduce the experimental results.
Chemical Communications | 2002
Stephen Faulkner; Benjamin P. Burton-Pye; Tahir Khan; Leigh R. Martin; Steven D. Wray; Peter J. Skabara
Tetrathiafulvalene carboxylate associates with the charge neutral complex, Yb.DO3A, in methanolic solution to give rise to a novel ternary species; the tetrathiafulvalene unit transfers energy to the lanthanide, causing luminescence from the Yb metal, indicating for the first time that an electron donor chromophore can act as an efficient sensitiser in a self-assembled system containing a lanthanide acceptor.