Nicholas C. Schmitt
Idaho National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas C. Schmitt.
Inorganic Chemistry | 2008
Bruce J. Mincher; Leigh R. Martin; Nicholas C. Schmitt
Higher oxidation states of americium have long been known; however, options for their preparation in acidic solution are limited. The conventional choice, silver-catalyzed peroxydisulfate, is not useful at nitric acid concentrations above about 0.3 M. We investigated the use of sodium bismuthate as an oxidant for Am (3+) in acidic solution. Room-temperature oxidation produced AmO 2 (2+) quantitatively, whereas oxidation at 80 degrees C produced AmO 2 (+) quantitatively. The efficacy of the method for the production of oxidized americium was verified by fluoride precipitation and by spectroscopic absorbance measurements. We performed absorbance measurements using a conventional 1 cm cell for high americium concentrations and a 100 cm liquid waveguide capillary cell for low americium concentrations. Extinction coefficients for the absorbance of Am (3+) at 503 nm, AmO 2 (+) at 514 nm, and AmO 2 (2+) at 666 nm in 0.1 M nitric acid are reported. We also performed solvent extraction experiments with the hexavalent americium using the common actinide extraction ligand tributyl phosphate (TBP) for comparison to the other hexavalent actinides. Contact with 30% tributyl phosphate in dodecane reduced americium; it was nevertheless extracted using short contact times. The TBP extraction of AmO 2 (2+) over a range of nitric acid concentrations is shown for the first time and was found to be analogous to that of uranyl, neptunyl, and plutonyl ions.
Solvent Extraction and Ion Exchange | 2012
Bruce J. Mincher; Leigh R. Martin; Nicholas C. Schmitt
The separation of hexavalent americium from the lanthanides in simulated PUREX raffinate solution using 1 M diamylamylphosphonate in dodecane extraction was investigated. Hexavalent americium was prepared using room-temperature sodium bismuthate oxidation. Under these conditions the majority of the lanthanides were not oxidized and remained inextractable. A separation factor of ∼50 was provided for americium from europium over the nitric acid concentration range 6–7 M. Cerium was the exception with oxidation to CeIV resulting in its co-extraction with AmVI. However, since americium is readily reduced to AmIII it was easily stripped with a dilute acidic solution of hydrogen peroxide. Although hydrogen peroxide also reduces cerium, it does so slowly, and a selective americium strip was achieved, with a separation factor of as high as 35. Alternatively, since americium spontaneously reduced in the loaded organic phase, samples allowed to stand for 2 hours could be selectively stripped of americium by contact with 1 M HNO3 containing no additional reagents. Further, the separation was demonstrated using solutions containing macro-amounts of cerium and americium. The implications for use in fuel cycle separations are discussed.
Solvent Extraction and Ion Exchange | 2011
Bruce J. Mincher; Nicholas C. Schmitt; Mary E. Case
Abstract The inextractability of the actinide AnO2 + ions by the TRUEX solvent suggests the possibility of a separation of americium from the lanthanides using oxidation to Am(V). The only current method for the direct oxidation of americium to Am(V) in strongly acidic media is with sodium bismuthate. We prepared Am(V) over a wide range of nitric acid concentrations and investigated its solvent-extraction behavior for comparison to europium. While a separation is achievable in principal, the presence of macro amounts of cerium competes for the sparingly soluble oxidant and the oxidant itself competes for CMPO complexation. These factors conspire to reduce the Eu/Am separation factor from ∼40 using tracer solutions to ∼5 for extractions from the first-cycle raffinate simulant solution. To separate pentavalent americium directly from the lanthanides using the TRUEX process, an alternative oxidizing agent may be necessary.
Solvent Extraction and Ion Exchange | 2014
Bruce J. Mincher; Nicholas C. Schmitt; Richard D. Tillotson; Gracy Elias; Byron M. White; Jack D. Law
Successful deployment of the currently-envisioned advanced nuclear fuel cycle requires the development of a partitioning scheme to separate Am from the lanthanides. The Am/lanthanide separation is challenging since all the metals are normally trivalent and have similar ionic radii. Oxidation of Am to higher oxidation states is one option to achieve such a separation. Hexavalent Am has now been routinely prepared in our laboratory in strongly acidic solution using sodium bismuthate as the oxidant, and then extracted into diamylamylphosphonate/dodecane solution. Here, we have characterized this phosphonate-containing solvent with regard to the extraction of Am, the lanthanides, Cm, other fission product, and/or inert constituents expected in dissolved nuclear fuel. Additionally, the effects of irradiation on dispersion numbers and the phosphonate concentration were investigated.
RSC Advances | 2015
Bruce J. Mincher; Nicholas C. Schmitt; Brian K. Schuetz; Thomas C. Shehee; David T. Hobbs
The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. The utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.
Solvent Extraction and Ion Exchange | 2013
Bruce J. Mincher; Stephen P. Mezyk; Gracy Elias; Gary S. Groenewold; Jay A. LaVerne; Mikael Nilsson; J. Pearson; Nicholas C. Schmitt; Richard D. Tillotson; Lonnie G. Olson
Octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in dodecane was subjected to α-irradiation using a He-ion beam, 244 Cm isotopic α-rays, and He and Li ions created by the n,α reaction of 10B in a nuclear reactor. Post-irradiation samples were analyzed for the radiolytically-induced decrease in CMPO concentration, the appearance of degradation products, and their Am solvent extraction distribution ratios. The –G CMPO-value for the radiolytic degradation of CMPO was found to be very low compared to values previously reported for γ-irradiation. Additionally, isotopic irradiation to absorbed α-doses as high as 600 kGy in aerated solution had no effect on Am solvent extraction or stripping. The main CMPO radiolysis products identified in He-ion beam irradiated samples by ESI-MS include amides, an acidic amide, and amines produced by bond rupture on either side of the CMPO carbonyl group. Deaerated samples irradiated using the reactor in the absence of an aqueous phase, or with a dilute nitric acid aqueous phase showed small but measurable decreases in CMPO concentration with increasing absorbed doses. Higher concentrations of nitric acid resulted in lower decomposition rates for the CMPO. The radio-protection by dissolved oxygen and nitric acid previously found for γ-irradiated CMPO also occurs for α-irradiation. This suggests that similar free-radical mechanisms operate in the high-LET system, but with lower degradation yields due to the lower overall radical concentrations produced.
Journal of Radioanalytical and Nuclear Chemistry | 2009
Leigh R. Martin; Bruce J. Mincher; Nicholas C. Schmitt
Journal of Radioanalytical and Nuclear Chemistry | 2016
Bruce J. Mincher; Richard D. Tillotson; Troy G. Garn; Veronica Rutledge; Jack D. Law; Nicholas C. Schmitt
Archive | 2014
Jack D. Law; Bruce J. Mincher; Troy G. Garn; Mitchell Greenhalgh; Nicholas C. Schmitt; Veronica Rutledge
Industrial & Engineering Chemistry Research | 2017
Kevin McCann; Bruce J. Mincher; Nicholas C. Schmitt; Jenifer C. Braley