Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leigh Wellhauser is active.

Publication


Featured researches published by Leigh Wellhauser.


Molecular Pharmacology | 2009

A Small-Molecule Modulator Interacts Directly with ΔPhe508-CFTR to Modify Its ATPase Activity and Conformational Stability

Leigh Wellhauser; Patrick Kim Chiaw; Stan Pasyk; Canhui Li; Mohabir Ramjeesingh; Christine E. Bear

The deletion of Phe-508 (ΔPhe508) constitutes the most prevalent of a number of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that cause cystic fibrosis (CF). This mutation leads to CFTR misfolding and retention in the endoplasmic reticulum, as well as impaired channel activity. The biosynthetic defect can be partially overcome by small-molecule “correctors”; once at the cell surface, small-molecule “potentiators” enhance the channel activity of ΔPhe508-CFTR. Certain compounds, such as VRT-532, exhibit both corrector and potentiator functions. In the current studies, we confirmed that the inherent chloride channel activity of ΔPhe508-CFTR (after biosynthetic rescue) is potentiated in studies of intact cells and membrane vesicles. It is noteworthy that we showed that the ATPase activity of the purified and reconstituted mutant protein is directly modulated by binding of VRT-532 [4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol] ATP turnover by reconstituted ΔPhe508-CFTR is decreased by VRT-532 treatment, an effect that may account for the increase in channel open time induced by this compound. To determine whether the modification of ΔPhe508-CFTR function caused by direct VRT-532 binding is associated with structural changes, we evaluated the effect of VRT-532 binding on the protease susceptibility of the major mutant. We found that binding of VRT-532 to ΔPhe508-CFTR led to a minor but significant decrease in the trypsin susceptibility of the full-length mutant protein and a fragment encompassing the second half of the protein. These findings suggest that direct binding of this small molecule induces and/or stabilizes a structure that promotes the channel open state and may underlie its efficacy as a corrector of ΔPhe508-CFTR.


Journal of Neuroinflammation | 2014

Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons

Leigh Wellhauser; Denise D Belsham

BackgroundOvernutrition and the ensuing hypothalamic inflammation is a major perpetuating factor in the development of metabolic diseases, such as obesity and diabetes. Inflamed neurons of the CNS fail to properly regulate energy homeostasis leading to pathogenic changes in glucose handling, feeding, and body weight. Hypothalamic neurons are particularly sensitive to pro-inflammatory signals derived locally and peripherally, and it is these neurons that become inflamed first upon high fat feeding. Given the prevalence of metabolic disease, efforts are underway to identify therapeutic targets for this inflammatory state. At least in the periphery, omega-3 fatty acids and their receptor, G-protein coupled receptor 120 (GPR120), have emerged as putative targets. The role for GPR120 in the hypothalamus or CNS in general is poorly understood.MethodsHere we introduce a novel, immortalized cell model derived from the rat hypothalamus, rHypoE-7, to study GPR120 activation at the level of the individual neuron. Gene expression levels of pro-inflammatory cytokines were studied by quantitative reverse transcriptase-PCR (qRT-PCR) upon exposure to tumor necrosis factor α (TNFα) treatment in the presence or absence of the polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA). Signal transduction pathway involvement was also studied using phospho-specific antibodies to key proteins by western blot analysis.ResultsImportantly, rHypoE-7 cells exhibit a transcriptional and translational inflammatory response upon exposure to TNFα and express abundant levels of GPR120, which is functionally responsive to DHA. DHA pretreatment prevents the inflammatory state and this effect was inhibited by the reduction of endogenous GPR120 levels. GPR120 activates both AKT (protein kinase b) and ERK (extracellular signal-regulated kinase); however, the anti-inflammatory action of this omega-3 fatty acid (FA) receptor is AKT- and ERK-independent and likely involves the GPR120-transforming growth factor-β-activated kinase 1 binding protein (TAB1) interaction as identified in the periphery.ConclusionsTaken together, GPR120 is functionally active in the hypothalamic neuronal line, rHypoE-7, wherein it mediates the anti-inflammatory actions of DHA to reduce the inflammatory response to TNFα.


Molecular Pharmacology | 2010

A Chemical Corrector Modifies the Channel Function of F508del-CFTR

Patrick Kim Chiaw; Leigh Wellhauser; Ling Jun Huan; Mohabir Ramjeesingh; Christine E. Bear

The deletion of Phe-508 (F508del) constitutes the most prevalent cystic fibrosis-causing mutation. This mutation leads to cystic fibrosis transmembrane conductance regulator (CFTR) misfolding and retention in the endoplasmic reticulum and altered channel activity in mammalian cells. This folding defect can however be partially overcome by growing cells expressing this mutant protein at low (27°C) temperature. Chemical “correctors” have been identified that are also effective in rescuing the biosynthetic defect in F508del-CFTR, thereby permitting its functional expression at the cell surface. The mechanism of action of chemical correctors remains unclear, but it has been suggested that certain correctors [including 4-cyclohexyloxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-325)] may act to promote trafficking by interacting directly with the mutant protein. To test this hypothesis, we assessed the effect of VRT-325 addition on the channel activity of F508del-CFTR after its surface expression had been “rescued” by low temperature. It is noteworthy that short-term pretreatment with VRT-325 [but not with an inactive analog, 4-hydroxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-186)], caused a modest but significant inhibition of cAMP-mediated halide flux. Furthermore, VRT-325 decreased the apparent ATP affinity of purified and reconstituted F508del-CFTR in our ATPase activity assay, an effect that may account for the decrease in channel activity by temperature-rescued F508del-CFTR. These findings suggest that biosynthetic rescue mediated by VRT-325 may be conferred (at least in part) by direct modification of the structure of the mutant protein, leading to a decrease in its ATP-dependent conformational dynamics. Therefore, the challenge for therapy discovery will be the design of small molecules that bind to promote biosynthetic maturation of the major mutant without compromising its activity in vivo.


Biochemical Journal | 2006

Nucleotides bind to the C-terminus of ClC-5

Leigh Wellhauser; Hsin-Hen Kuo; Fiona L. L. Stratford; Mohabir Ramjeesingh; Ling-Jun Huan; Winnie Luong; Canhui Li; Charles M. Deber; Christine E. Bear

Mutations in ClC-5 (chloride channel 5), a member of the ClC family of chloride ion channels and antiporters, have been linked to Dents disease, a renal disease associated with proteinuria. Several of the disease-causing mutations are premature stop mutations which lead to truncation of the C-terminus, pointing to the functional significance of this region. The C-terminus of ClC-5, like that of other eukaryotic ClC proteins, is cytoplasmic and contains a pair of CBS (cystathionine beta-synthase) domains connected by an intervening sequence. The presence of CBS domains implies a regulatory role for nucleotide interaction based on studies of other unrelated proteins bearing these domains [Ignoul and Eggermont (2005) Am. J. Physiol. Cell Physiol. 289, C1369-C1378; Scott, Hawley, Green, Anis, Stewart, Scullion, Norman and Hardie (2004) J. Clin. Invest. 113, 274-284]. However, to date, there has been no direct biochemical or biophysical evidence to support nucleotide interaction with ClC-5. In the present study, we have expressed and purified milligram quantities of the isolated C-terminus of ClC-5 (CIC-5 Ct). CD studies show that the protein is compact, with predominantly alpha-helical structure. We determined, using radiolabelled ATP, that this nucleotide binds the folded protein with low affinity, in the millimolar range, and that this interaction can be competed with 1 muM AMP. CD studies show that binding of these nucleotides causes no significant change in secondary structure, consistent with a model wherein these nucleotides bind to a preformed site. However, both nucleotides induce an increase in thermal stability of ClC-5 Ct, supporting the suggestion that both nucleotides interact with and modify the biophysical properties of this protein.


Journal of Cell Science | 2009

An essential role for ClC-4 in transferrin receptor function revealed in studies of fibroblasts derived from Clcn4-null mice

Raha Mohammad-Panah; Leigh Wellhauser; Benjamin E. Steinberg; Yanchun Wang; Ling Jun Huan; Xiang-Dong Liu; Christine E. Bear

ClC-4 is closely related to ClC-5, a member of the ClC family of transporters and channels. Unlike ClC-5, for which a role in the regulation of endosomal function was well established, the cellular function of ClC-4 was uncertain. In the present study, we tested for a specific role for ClC-4 in recycling endosomes by comparing transferrin (Tfn) receptor function in primary cell lines generated from ClC-4-null mice and their wild-type siblings. We found that endosomal pH is relatively alkaline and receptor-mediated uptake of Tfn is reduced in ClC-4-null fibroblasts. Surprisingly, this reduction in Tfn uptake occurs, despite a minor increase in the total surface expression of the Tfn receptor in ClC-4-null fibroblasts. As impaired Tfn uptake by ClC-4-null fibroblasts could be rescued to wild-type levels by addition of the iron chelator: desoxiferramine, the primary defect in these cells is related to the failure of iron to dissociate from Tfn, a pH-dependent event in endosomes that precedes the dissociation of Tfn from its receptor at the cell surface. Interestingly, ClC-4 depletion had no effect on epidermal growth factor receptor (EGFR) trafficking to lysosomes for degradation pointing to its specific role in recycling endosomes. These observations provide direct evidence supporting an essential role for ClC-4 in the modulation of Tfn receptor accessibility at the cell surface through its role in endosomal acidification.


Pflügers Archiv: European Journal of Physiology | 2010

ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5

Leigh Wellhauser; Christina D’Antonio; Christine E. Bear

The involvement of several members of the chloride channel (ClC) family of membrane proteins in human disease highlights the need to define the mechanisms underlying their function and the consequences of disease-causing mutations. Despite the utility of high-resolution structural models, our understanding of the molecular basis for function of the chloride channels and transporters in the family remains incomplete. In this review, we focus on recent discoveries regarding molecular mechanisms underlying the regulated chloride:proton antiporter activity of ClC-5, the protein mutated in the Dent’s disease—a kidney disease presenting with proteinuria and renal failure in severe cases. We discuss the putative role of ClC-5 in receptor-mediated endocytosis and protein uptake by the proximal renal tubule and the possible molecular and cellular consequences of disease-causing mutations. However, validation of these models will require future study of the intrinsic function of this transporter, in situ, in the membranes of recycling endosomes in proximal tubule epithelial cells.


Journal of Biological Chemistry | 2011

ATP Induces Conformational Changes in the Carboxyl-terminal Region of ClC-5

Leigh Wellhauser; Cesar Luna-Chavez; Christina D'Antonio; John A. Tainer; Christine E. Bear

ATP binding enhances the activity of ClC-5, the transporter mutated in Dent disease, a disease affecting the renal proximal tubule. Previously, the ATP binding site was revealed in x-ray crystal structures of the cytoplasmic region of this membrane protein. Disruption of this site by mutagenesis (Y617A-ClC-5) reduced the functional expression and ATP-dependent regulation of the full-length transporter in Xenopus oocytes. However, insight into the conformational changes underlying ATP-dependent regulation is lacking. Here, we show that ATP binding induces a change in protein conformation. Specifically, small angle x-ray scattering experiments indicate that ATP binding promotes a clamp-like closure of the isolated ClC-5 carboxyl-terminal region. Limited proteolysis studies show that ATP binding induces conformational compaction of the carboxyl-terminal region in the intact membrane protein as well. In the context of fibroblasts and proximal tubule epithelial cells, disruption of the ATP binding site in full-length ClC-5 (Y617A-ClC-5) led to a defect in processing and trafficking out of the endoplasmic reticulum. These latter findings account for the decrease in functional expression previously reported for this ATP-binding mutant and prompt future study of a model whereby conformational compaction caused by ATP binding promotes biosynthetic maturation.


Biochemical Journal | 2013

Conformational defects underlie proteasomal degradation of Dent's disease-causing mutants of ClC-5.

Christina D’Antonio; Steven Molinski; Saumel Ahmadi; Ling-Jun Huan; Leigh Wellhauser; Christine E. Bear

Mutations in the CLCN5 (chloride channel, voltage-sensitive 5) gene cause Dents disease because they reduce the functional expression of the ClC-5 chloride/proton transporter in the recycling endosomes of proximal tubule epithelial cells. The majority (60%) of these disease-causing mutations in ClC-5 are misprocessed and retained in the ER (endoplasmic reticulum). Importantly, the structural basis for misprocessing and the cellular destiny of such ClC-5 mutants have yet to be defined. A ClC-5 monomer comprises a short N-terminal region, an extensive membrane domain and a large C-terminal domain. The recent crystal structure of a eukaryotic ClC (chloride channel) transporter revealed the intimate interaction between the membrane domain and the C-terminal region. Therefore we hypothesized that intramolecular interactions may be perturbed in certain mutants. In the present study we examined two misprocessed mutants: C221R located in the membrane domain and R718X, which truncates the C-terminal domain. Both mutants exhibited enhanced protease susceptibility relative to the normal protein in limited proteolysis studies, providing direct evidence that they are misfolded. Interestingly, the membrane-localized mutation C221R led to enhanced protease susceptibility of the cytosolic N-terminal region, and the C-terminal truncation mutation R718X led to enhanced protease susceptibility of both the cytosolic C-terminal and the membrane domain. Together, these studies support the idea that certain misprocessing mutations alter intramolecular interactions within the full-length ClC-5 protein. Further, we found that these misfolded mutants are polyubiquitinated and targeted for proteasomal degradation in the OK (opossum kidney) renal epithelial cells, thereby ensuring that they do not elicit the unfolded protein response.


npj Genomic Medicine | 2017

Phenotypic profiling of CFTR modulators in patient-derived respiratory epithelia

Saumel Ahmadi; Zoltan Bozoky; Michelle Di Paola; Sunny Xia; Canhui Li; Amy P. Wong; Leigh Wellhauser; Steven Molinski; Wan Ip; Hong Ouyang; Julie Avolio; Julie D. Forman-Kay; Felix Ratjen; Jeremy A. Hirota; Johanna M. Rommens; Janet Rossant; Tanja Gonska; Theo J. Moraes; Christine E. Bear

Pulmonary disease is the major cause of morbidity and mortality in patients with cystic fibrosis, a disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Heterogeneity in CFTR genotype–phenotype relationships in affected individuals plus the escalation of drug discovery targeting specific mutations highlights the need to develop robust in vitro platforms with which to stratify therapeutic options using relevant tissue. Toward this goal, we adapted a fluorescence plate reader assay of apical CFTR-mediated chloride conductance to enable profiling of a panel of modulators on primary nasal epithelial cultures derived from patients bearing different CFTR mutations. This platform faithfully recapitulated patient-specific responses previously observed in the “gold-standard” but relatively low-throughput Ussing chamber. Moreover, using this approach, we identified a novel strategy with which to augment the response to an approved drug in specific patients. In proof of concept studies, we also validated the use of this platform in measuring drug responses in lung cultures differentiated from cystic fibrosis iPS cells. Taken together, we show that this medium throughput assay of CFTR activity has the potential to stratify cystic fibrosis patient-specific responses to approved drugs and investigational compounds in vitro in primary and iPS cell-derived airway cultures.Cystic fibrosis: toward personalized therapiesA new method for evaluating drug responses in patient-derived respiratory tissue promises to help determine the best treatment for each patient with cystic fibrosis (CF). CF patients are highly susceptible to lung infections due to the build-up of thick mucus in the airways. Over 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified in patients with CF, which partly explains their varied response to treatment. Saumel Ahmadi, Christine E. Bear, and colleagues at the Hospital for Sick Children in Toronto developed a fluorescence-based method for measuring improvements in mutant CFTR function in patient-derived nasal and induced pluripotent stem cell-derived lung tissue. This method enables comparison of approved and investigational drugs on airway cells from each individual patient and in the longer term will accelerate the development of personalized therapeutic strategies.


Molecular Endocrinology | 2016

Nitric Oxide Exerts Basal and Insulin-Dependent Anorexigenic Actions in POMC Hypothalamic Neurons

Leigh Wellhauser; Jennifer A. Chalmers; Denise D. Belsham

The arcuate nucleus of the hypothalamus represents a key center for the control of appetite and feeding through the regulation of 2 key neuronal populations, notably agouti-related peptide/neuropeptide Y and proopimelanocortin (POMC)/cocaine- and amphetamine-regulated transcript neurons. Altered regulation of these neuronal networks, in particular the dysfunction of POMC neurons upon high-fat consumption, is a major pathogenic mechanism involved in the development of obesity and type 2 diabetes mellitus. Efforts are underway to preserve the integrity or enhance the functionality of POMC neurons in order to prevent or treat these metabolic diseases. Here, we report for the first time that the nitric oxide (NO(-)) donor, sodium nitroprusside (SNP) mediates anorexigenic actions in both hypothalamic tissue and hypothalamic-derived cell models by mediating the up-regulation of POMC levels. SNP increased POMC mRNA in a dose-dependent manner and enhanced α-melanocortin-secreting hormone production and secretion in mHypoA-POMC/GFP-2 cells. SNP also enhanced insulin-driven POMC expression likely by inhibiting the deacetylase activity of sirtuin 1. Furthermore, SNP enhanced insulin-dependent POMC expression, likely by reducing the transcriptional repression of Foxo1 on the POMC gene. Prolonged SNP exposure prevented the development of insulin resistance. Taken together, the NO(-) donor SNP enhances the anorexigenic potential of POMC neurons by promoting its transcriptional expression independent and in cooperation with insulin. Thus, increasing cellular NO(-) levels represents a hormone-independent method of promoting anorexigenic output from the existing POMC neuronal populations and may be advantageous in the fight against these prevalent disorders.

Collaboration


Dive into the Leigh Wellhauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Canhui Li

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy P. Wong

Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Ouyang

Hospital for Sick Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge