Leimeng Xu
Nanjing University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leimeng Xu.
Advanced Materials | 2015
Jizhong Song; Jianhai Li; Xiaoming Li; Leimeng Xu; Yuhui Dong; Haibo Zeng
Novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals are reported. The well-dispersed, single-crystal quantum dots (QDs) exhibit high quantum yields, and tunable light emission wavelength. The demonstration of these novel perovskite QDs opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.
Advanced Materials | 2017
Jianhai Li; Leimeng Xu; Tao Wang; Jizhong Song; Jiawei Chen; Jie Xue; Yuhui Dong; Bo Cai; Qingsong Shan; Boning Han; Haibo Zeng
Solution-processed CsPbBr3 quantum-dot light-emitting diodes with a 50-fold external quantum efficiency improvement (up to 6.27%) are achieved through balancing surface passivation and carrier injection via ligand density control (treating with hexane/ethyl acetate mixed solvent), which induces the coexistence of high levels of ink stability, photoluminescence quantum yields, thin-film uniformity, and carrier-injection efficiency.
Advanced Materials | 2016
Jizhong Song; Leimeng Xu; Jianhai Li; Jie Xue; Yuhui Dong; Xiaoming Li; Haibo Zeng
Printed flexible photodetectors based on 2D inorganic perovskites with atomic thickness show excellent photosensing with fast rise and decay response times. As-synthesized nanosheets can easily be dispersed in various solvents, leading to large-area, crack-free, low-roughness, flexible films after printing. This study demonstrates that all-inorganic perovskite CsPbX3 nanosheets as a new class of 2D semiconductors have huge potential for flexible optoelectronic applications.
Small | 2016
Yuhui Dong; Yu Gu; Yousheng Zou; Jizhong Song; Leimeng Xu; Jianhai Li; Jie Xue; Xiaoming Li; Haibo Zeng
All-inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high-performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred-orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 106 on/off ratio. The CsPbBr3 and Au NC inks are assembled into high-quality films by centrifugal-casting and spin-coating, respectively, which lead to the low cost and solution-processed photodetectors. The remarkable near-field enhancement effect induced by the coupling between Au LSPR and CsPbBr3 photogenerated carriers is revealed by finite-difference time-domain simulations. The photodetector exhibits a light on/off ratio of more than 106 under 532 nm laser illumination of 4.65 mW cm-2 . The photocurrent increases from 0.67 to 2.77 μA with centrifugal-casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR-enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all-inorganic perovskites are promising semiconductors for high-performance solution-processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.
Journal of Materials Chemistry C | 2017
Qingsong Shan; Jianhai Li; Jizhong Song; Yousheng Zou; Leimeng Xu; Jie Xue; Yuhui Dong; Chengxue Huo; Jiawei Chen; Boning Han; Haibo Zeng
Recently, both light-to-electricity and electricity-to-light conversion efficiencies of perovskite achieved a breakthrough, e.g. 22.1% for solar cells and 11.7% for light-emitting diodes (LEDs), so the next fatal problem towards practical application, the device stability, became the key issue in this field. Here, we report all-inorganic LEDs including inorganic perovskite emitters (CsPbBr3) and inorganic charge transport layers (CTLs), with an emphasis on the significantly improved device stability. The quantum dot LEDs (QLEDs) were fabricated according to ITO/NiO/CsPbBr3 QDs/ZnO/Al device configuration. On the one hand, the all-inorganic LED lifetime under 65% humidity corresponding to a 70% electroluminescence (EL) conservation rate can be improved up to 3.5 times when compared with LEDs adopting conventional organic CTLs due to the intrinsic chemical stability of these inorganic CTLs and their less hydrophilic surfaces. Furthermore, as a surprise, the bare all-inorganic LED without encapsulation can work in water for about 20 seconds, which is over 10 times more sustainable than the organic–inorganic LED, which proves the excellent water-isolation ability. On the other hand, the all-inorganic QLEDs show the lowest turn-on voltage of 2.4 V among all the reported CsPbBr3 QLEDs because the inorganic CTLs possess well-matched energy band alignments with CsPbBr3, and hence result in efficient carrier injection. This work paves the way to constructing all-inorganic devices for stable perovskite photovoltaic and light-emitting devices.
Small | 2017
Qingsong Shan; Jizhong Song; Yousheng Zou; Jianhai Li; Leimeng Xu; Jie Xue; Yuhui Dong; Boning Han; Jiawei Chen; Haibo Zeng
Metal halide perovskites have drawn significant interest in the past decade. Superior optoelectronic properties, such as a narrow bandwidth, precise and facile tunable luminance over the entire visible spectrum, and high photoluminescence quantum yield of up to ≈100%, render metal halide perovskites suitable for next-generation high-definition displays and healthy lighting systems. The external quantum efficiency of perovskite light-emitting diodes (LEDs) increases from 0.1 to 11.7% in three years; however, the energy conversion efficiency and the long-term stability of perovskite LEDs are inadequate for practical application. Strategies to optimize the emitting layer and the device structure, with respect to material design, synthesis, surface passivation, and device optimization, are reviewed and highlighted. The long-term stability of perovskite LEDs is evaluated as well. Meanwhile, several challenges and prospects for future development of perovskite materials and LEDs are identified.
Angewandte Chemie | 2017
Jie Xue; Yu Gu; Qingsong Shan; Yousheng Zou; Jizhong Song; Leimeng Xu; Yuhui Dong; Jianhai Li; Haibo Zeng
Light harvesting (LH) and carrier transport abilities of a photoactive layer, which are both crucial for optoelectronic devices such as solar cells and photodetectors (PDs), are typically hard to be synergistically improved. Taking perovskite as an example, a freeze-drying recrystallization method is used to construct porous films with improvements of both LH and carrier transport ability. During the freeze-drying casting process, the rapid solvent evaporation produces massive pores, the sizes of which can be adjusted to exploit the Mie scattering for enhancement of the LH ability. Meanwhile, owing to the strong iconicity, the interface between perovskite nanocrystals fused during recrystallization, which favors carrier transport. Subsequently, PDs based on these Mie porous and interface-fused films show a high on/off ratio of more than 104 and an external quantum efficiency value of 658 % under 9 V bias and 520 nm light irradiation.
ACS Applied Materials & Interfaces | 2017
Leimeng Xu; Jiawei Chen; Jizhong Song; Jianhai Li; Jie Xue; Yuhui Dong; Bo Cai; Qingsong Shan; Boning Han; Haibo Zeng
Novel fluorescence with highly covert and reliable features is quite desirable to combat the sophisticated counterfeiters. Herein, we report a simultaneously triple-modal fluorescent characteristic of CsPbBr3@Cs4PbBr6/SiO2 by the excitation of thermal, ultraviolet (UV) and infrared (IR) light for the first time, which can be applied for the multiple modal anti-counterfeiting codes. The diphasic structure CsPbBr3@Cs4PbBr6 nanocrystals (NCs) was synthesized via the typical reprecipitation method followed by uniformly encapsulation into silica microspheres. Cubic CsPbBr3 is responsible for the functions of anti-counterfeiting, while Cs4PbBr6 crystalline and SiO2 are mainly to protect unstable CsPbBr3 NCs from being destroyed by ambient conditions. The as-prepared CsPbBr3@Cs4PbBr6/SiO2 NCs possess improved stability and are capable of forming printable ink with organic binders for patterns. Interestingly, the fluorescence of diphasic CsPbBr3@Cs4PbBr6/SiO2 capsule patterns can be reversibly switched by the heating, UV, and IR light irradiation, which has been applied as triple-modal fluorescent anti-counterfeiting codes. The results demonstrate that the perovskite@silica capsules are highly promising for myriad applications in areas such as fluorescent anti-counterfeiting, optoelectronic devices, medical diagnosis, and biological imaging.
RSC Advances | 2016
Jie Xue; Jizhong Song; Yousheng Zou; Chengxue Huo; Yuhui Dong; Leimeng Xu; Jianhai Li; Haibo Zeng
Compared to monometallic counterparts, core–shell structured nanowires may possess additional performances or even new properties because of synergistic effects between two components. Particularly, the alloying shell may bring the advantage that we can adjust its components and sizes to achieve the desired performance. Here, we mainly study Ni-dependent electric stability and opto-electrical performances of Cu@CuNi NW electrodes. And we find that the increase of nickel content has little effect on optical performance, but effectively improves the stability of Cu@CuNi NW electrodes. We can also achieve ideal performance through regulating the nickel content and outstanding performance may come from the particular structure. Hence we studied Ni-dependent microstructure variations of Cu@CuNi NWs with the corresponding properties. The high stability NWs with a high nickel content have smooth CuNi alloying shells which effectively protect the NWs from oxidation. At the same time, the large length diameter ratio and high degree of crystallinity of Cu@CuNi NWs are the reasons for good transparent conductive properties. These demonstrations of controlling the composition of alloying shells for oxidation resistance of the NWs could bring forth great opportunities for transparent, flexible, stretchable, and wearable electronic and optoelectronic devices.
Advanced Materials | 2015
Jizhong Song; Jianhai Li; Xiaoming Li; Leimeng Xu; Yuhui Dong; Haibo Zeng
With applications in next-generation displays and lighting, on page 7162, H. Zeng and co-workers, demonstrate quantum-dot light-emitting diodes (QLEDs) based on all-inorganic perovskite cesium lead halides (CsPbX3 ) with a peak width as narrow as 20 nm and colors covering the whole visible region.