Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lekha T. Pazhamala is active.

Publication


Featured researches published by Lekha T. Pazhamala.


Frontiers in Plant Science | 2015

Gene Expression and Yeast Two-Hybrid Studies of 1R-MYB Transcription Factor Mediating Drought Stress Response in Chickpea (Cicer arietinum L.)

Abirami Ramalingam; Himabindu Kudapa; Lekha T. Pazhamala; Vanika Garg; Rajeev K. Varshney

Drought stress has been one of the serious constraints affecting chickpea productivity to a great extent. Genomics-assisted breeding has a potential to accelerate breeding precisely and efficiently. In order to do so, understanding the molecular mechanisms for drought tolerance and identification of candidate genes are crucial. Transcription factors (TFs) have important roles in the regulation of plant stress related genes. In this context, quantitative real time-PCR (qRT-PCR) was used to study the differential gene expression of selected TFs, identified from large-scale expressed sequence tags (ESTs) analysis, in contrasting drought responsive genotypes. Root tissues of ICC 4958 (tolerant), ICC 1882 (sensitive), JG 11 (elite), and JG 11+ (introgression line) were used for the study. Subsequently, a candidate single repeat MYB (1R-MYB) transcript that was remarkably induced in the drought tolerant genotypes under drought stress was cloned (coding sequence region for the 1R-MYB protein) and subjected to yeast two-hybrid (Y2H) analysis. The screening of a root cDNA library with Y2H using the 1R-MYB bait protein, identified three CDS encoding peptides namely, galactinol-sucrose galactosyltransferase 2, CBL (Calcineurin B-like)-interacting serine/threonine-protein kinase 25, and ABA responsive 17-like, which were confirmed by co-transformation in yeast. These findings provide preliminary insights into the ability of this 1R-MYB transcription factor to co-regulate drought tolerance mechanism in chickpea.


Critical Reviews in Plant Sciences | 2015

Translational Genomics in Agriculture: Some Examples in Grain Legumes

Rajeev K. Varshney; Himabindu Kudapa; Lekha T. Pazhamala; Annapurna Chitikineni; Mahendar Thudi; Abhishek Bohra; Pooran M. Gaur; Pasupuleti Janila; Asnake Fikre; Paul Kimurto; Noel Ellis

Recent advances in genomics and associated disciplines like bioinformatics have made it possible to develop genomic resources, such as large-scale sequence data for any crop species. While these datasets have been proven very useful for the understanding of genome architecture and dynamics as well as facilitating the discovery of genes, an obligation for, and challenge to the scientific community is to translate genome information to develop products, i.e. superior lines for trait(s) of interest. We call this approach, “translational genomics in agriculture” (TGA). TGA is currently in practice for cereal crops, such as maize (Zea mays) and rice (Oryza sativa), mainly in developed countries and by the private sector; progress has been slow for legume crops. Grown globally on 62.8 million ha with a production of 53.2 million tons and a value of nearly 24.2 billion dollars, the majority of these legumes have low crop productivity (<1 ton/ hectare) and are in the developing countries of sub Saharan Africa, Asia and South America. Interestingly, the last five years have seen enormous progress in genomics for these legume crops. Therefore, it is time to implement TGA in legume crops in order to enhance crop productivity and to ensure food security in developing countries. Prospects, as well as some success stories of TGA, in addition to advances in genomics, trait mapping and gene expression analysis are discussed for five leading legume crops, chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), groundnut (Arachis hypogaea), pigeonpea (Cajanus cajan) and soybean (Glycine max). Some efforts have also been outlined to initiate/ accelerate TGA in three additional legume crops namely faba bean (Vicia faba), lentil (Lens culinaris) and pea (Pisum sativum).


Plant Biotechnology Journal | 2016

Next‐generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan)

Vikas K. Singh; Aamir W. Khan; Rachit K. Saxena; Vinay Kumar; Sandip M. Kale; Pallavi Sinha; Annapurna Chitikineni; Lekha T. Pazhamala; Vanika Garg; Mamta Sharma; Chanda Venkata Sameer Kumar; Swathi Parupalli; Suryanarayana Vechalapu; Suyash Patil; Sonnappa Muniswamy; Anuradha Ghanta; Kalinati Narasimhan Yamini; Pallavi Subbanna Dharmaraj; Rajeev K. Varshney

Summary To map resistance genes for Fusarium wilt (FW) and sterility mosaic disease (SMD) in pigeonpea, sequencing‐based bulked segregant analysis (Seq‐BSA) was used. Resistant (R) and susceptible (S) bulks from the extreme recombinant inbred lines of ICPL 20096 × ICPL 332 were sequenced. Subsequently, SNP index was calculated between R‐ and S‐bulks with the help of draft genome sequence and reference‐guided assembly of ICPL 20096 (resistant parent). Seq‐BSA has provided seven candidate SNPs for FW and SMD resistance in pigeonpea. In parallel, four additional genotypes were re‐sequenced and their combined analysis with R‐ and S‐bulks has provided a total of 8362 nonsynonymous (ns) SNPs. Of 8362 nsSNPs, 60 were found within the 2‐Mb flanking regions of seven candidate SNPs identified through Seq‐BSA. Haplotype analysis narrowed down to eight nsSNPs in seven genes. These eight nsSNPs were further validated by re‐sequencing 11 genotypes that are resistant and susceptible to FW and SMD. This analysis revealed association of four candidate nsSNPs in four genes with FW resistance and four candidate nsSNPs in three genes with SMD resistance. Further, In silico protein analysis and expression profiling identified two most promising candidate genes namely C.cajan_01839 for SMD resistance and C.cajan_03203 for FW resistance. Identified candidate genomic regions/SNPs will be useful for genomics‐assisted breeding in pigeonpea.


Frontiers in Plant Science | 2015

Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

Abirami Ramalingam; Himabindu Kudapa; Lekha T. Pazhamala; Wolfram Weckwerth; Rajeev K. Varshney

The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several studies on proteomics and metabolomics in model and crop legumes have been discussed. Additionally, applications of advanced proteomics and metabolomics approaches have also been included in this review for future applications in legume research. The integration of these “omics” approaches will greatly support the identification of accurate biomarkers in legume smart breeding programs.


Frontiers in Plant Science | 2015

Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan)

Lekha T. Pazhamala; Rachit K. Saxena; Vikas K. Singh; C. V. Sameerkumar; Vinay Kumar; Pallavi Sinha; Kishan Patel; Jimmy Obala; Seleman R. Kaoneka; Pangirayi Tongoona; Hussein Shimelis; N. V. P. R. Gangarao; Damaris Achieng Odeny; Abhishek Rathore; P. S. Dharmaraj; Kalinati Narasimhan Yamini; Rajeev K. Varshney

Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB) through marker assisted selection as well as genomic selection (GS). This would accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile (CMS) lines, maintainers and hybrids have been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding.


Plant Biotechnology Journal | 2016

Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea

Gaurav Agarwal; Vanika Garg; Himabindu Kudapa; Dadakhalandar Doddamani; Lekha T. Pazhamala; Aamir W. Khan; Mahendar Thudi; Suk-Ha Lee; Rajeev K. Varshney

Summary APETALA2/ethylene response factor (AP2/ERF) and heat‐shock protein 90 (HSP90) are two significant classes of transcription factor and molecular chaperone proteins which are known to be implicated under abiotic and biotic stresses. Comprehensive survey identified a total of 147 AP2/ERF genes in chickpea, 176 in pigeonpea, 131 in Medicago, 179 in common bean and 140 in Lotus, whereas the number of HSP90 genes ranged from 5 to 7 in five legumes. Sequence alignment and phylogenetic analyses distinguished AP2, ERF, DREB, RAV and soloist proteins, while HSP90 proteins segregated on the basis of their cellular localization. Deeper insights into the gene structure allowed ERF proteins to be classified into AP2s based on DNA‐binding domains, intron arrangements and phylogenetic grouping. RNA‐seq and quantitative real‐time PCR (qRT‐PCR) analyses in heat‐stressed chickpea as well as Fusarium wilt (FW)‐ and sterility mosaic disease (SMD)‐stressed pigeonpea provided insights into the modus operandi of AP2/ERF and HSP90 genes. This study identified potential candidate genes in response to heat stress in chickpea while for FW and SMD stresses in pigeonpea. For instance, two DREB genes (Ca_02170 and Ca_16631) and three HSP90 genes (Ca_23016, Ca_09743 and Ca_25602) in chickpea can be targeted as potential candidate genes. Similarly, in pigeonpea, a HSP90 gene, C.cajan_27949, was highly responsive to SMD in the resistant genotype ICPL 20096, can be recommended for further functional validation. Also, two DREB genes, C.cajan_41905 and C.cajan_41951, were identified as leads for further investigation in response to FW stress in pigeonpea.


Archive | 2011

Genomics and Physiological Approaches for Root Trait Breeding to Improve Drought Tolerance in Chickpea ( Cicer arietinum L.)

Rajeev K. Varshney; Lekha T. Pazhamala; Junichi Kashiwagi; Pooran M. Gaur; L. Krishnamurthy; Dave A. Hoisington

Terminal drought stress is one of the most serious constraints in chickpea production in the semiarid tropics. Physiological and breeding studies have indicated that roots play an important role in conferring tolerance to drought in chickpea. As a result, root traits such as root depth, root length density, and root biomass are being targeted for understanding their genetics and extent of variation available in the germplasm collection. Efforts are also made for identifying molecular markers associated with different root traits responsible for conferring drought tolerance. In parallel, cDNA libraries are being generated from root tissues of chickpea exposed to drought stress in greenhouse as well as field conditions, and gene discovery experiments are underway. Molecular markers and candidate genes associated with root traits are being targeted to introgress the QTLs (quantitative trait loci) for root traits from drought-tolerant genotypes to drought-sensitive genotypes following marker-assisted breeding strategies. Thus, by combining genomics, physiology, and breeding, the development of drought-tolerant chickpea cultivars with higher yield in the semiarid tropics will be more effective and efficient.


Frontiers in Plant Science | 2015

Genomics for greater efficiency in pigeonpea hybrid breeding

Rachit K. Saxena; K. B. Saxena; Lekha T. Pazhamala; Kishan Patel; Swathi Parupalli; C. V. Sameerkumar; Rajeev K. Varshney

Cytoplasmic genic male sterility (CGMS) based hybrid technology has demonstrated its immense potential in increasing the productivity of various crops, including pigeonpea. This technology has shown promise for breaking the long-standing yield stagnation in pigeonpea. There are difficulties in commercial hybrid seed production due to non-availability of field-oriented technologies such as time-bound assessment of genetic purity of hybrid seeds. Besides this, there are other routine breeding activities which are labor oriented and need more resources. These include breeding and maintenance of new fertility restorers and maintainer lines, diversification of cytoplasm, and incorporation of biotic and abiotic stress resistances. The recent progress in genomics research could accelerate the existing traditional efforts to strengthen the hybrid breeding technology. Marker based seed purity assessment, identification of heterotic groups; selection of new fertility restorers are few areas which have already been initiated. In this paper efforts have been made to identify critical areas and opportunities where genomics can play a leading role and assist breeders in accelerating various activities related to breeding and commercialization of pigeonpea hybrids.


Frontiers in Plant Science | 2016

Identification and Validation of Selected Universal Stress Protein Domain Containing Drought-Responsive Genes in Pigeonpea (Cajanus cajan L.).

Pallavi Sinha; Lekha T. Pazhamala; Vikas K. Singh; Rachit K. Saxena; Lakshmanan Krishnamurthy; Sarwar Azam; Aamir W. Khan; Rajeev K. Varshney

Pigeonpea is a resilient crop, which is relatively more drought tolerant than many other legume crops. To understand the molecular mechanisms of this unique feature of pigeonpea, 51 genes were selected using the Hidden Markov Models (HMM) those codes for proteins having close similarity to universal stress protein domain. Validation of these genes was conducted on three pigeonpea genotypes (ICPL 151, ICPL 8755, and ICPL 227) having different levels of drought tolerance. Gene expression analysis using qRT-PCR revealed 6, 8, and 18 genes to be ≥2-fold differentially expressed in ICPL 151, ICPL 8755, and ICPL 227, respectively. A total of 10 differentially expressed genes showed ≥2-fold up-regulation in the more drought tolerant genotype, which encoded four different classes of proteins. These include plant U-box protein (four genes), universal stress protein A-like protein (four genes), cation/H(+) antiporter protein (one gene) and an uncharacterized protein (one gene). Genes C.cajan_29830 and C.cajan_33874 belonging to uspA, were found significantly expressed in all the three genotypes with ≥2-fold expression variations. Expression profiling of these two genes on the four other legume crops revealed their specific role in pigeonpea. Therefore, these genes seem to be promising candidates for conferring drought tolerance specifically to pigeonpea.


Journal of Experimental Botany | 2017

Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation

Lekha T. Pazhamala; Shilp Purohit; Rachit K. Saxena; Vanika Garg; L. Krishnamurthy; Jerome Verdier; Rajeev K. Varshney

Highlight A gene expression atlas of pigeonpea revealed spatio-temporal gene expression, co-expressed gene clusters and an important gene network critical for normal pollen and seed development.

Collaboration


Dive into the Lekha T. Pazhamala's collaboration.

Top Co-Authors

Avatar

Rajeev K. Varshney

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Rachit K. Saxena

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Himabindu Kudapa

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Vanika Garg

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Aamir W. Khan

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Gaurav Agarwal

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Pallavi Sinha

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Vinay Kumar

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Vikas K. Singh

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Annapurna Chitikineni

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Researchain Logo
Decentralizing Knowledge