LeMoyne Mueller
Fred Hutchinson Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by LeMoyne Mueller.
Molecular and Cellular Biology | 1990
Steven J. Collins; Kent A. Robertson; LeMoyne Mueller
Retinoic acid (RA) induces terminal granulocytic differentiation of the HL-60 promyelocytic leukemia cell line as well as certain other human myeloid leukemias. Specific RA receptors that are members of the steroid-thyroid hormone superfamily of nuclear transcription factors have recently been identified. We developed an HL-60 subclone that was relatively resistant to RA-induced differentiation. Specific nuclear RA receptors in this RA-resistant subclone had a decreased affinity for RA and exhibited a lower molecular weight compared with nuclear RA receptors from the RA-sensitive parental HL-60 cells. Retroviral vector-mediated transduction of a single copy of the RA receptor (RAR-alpha) into this RA-resistant HL-60 subclone restored the sensitivity of these cells to RA. These observations indicate that RAR-alpha plays a critical and central role in mediating RA-induced terminal differentiation of HL-60 leukemia cells.
Molecular and Cellular Biology | 1992
Kent A. Robertson; Babak Emami; LeMoyne Mueller; Steven J. Collins
The complex and diverse biological effects of retinoic acid (RA) are mediated through specific receptors that are members of the steroid hormone family of nuclear transcription factors. The RA receptor family consists of multiple structurally distinct RA receptors, which diverge primarily at the NH2-terminal domain. The evolutionary conservation of this divergent region in individual RA receptors among different species together with their tissue-specific patterns of expression suggest that the biological function and activity of the individual RA receptors may be confined to specific tissues. To test this hypothesis in hematopoietic cells, we used retrovirus-mediated gene transduction to introduce the RA receptors RAR-alpha, RAR-beta, and RAR-gamma as well as RXR-alpha into a mutant subclone of the HL-60 promyelocytic leukemia cell line (designated HL-60R) that is relatively resistant to RA-induced granulocytic differentiation. We found that each of these structurally distinct RA receptors could restore sensitivity of the HL-60R cells to RA. A critical threshold number of transduced receptors per cell appears to be necessary to restore this functional activity. Thus, the capability to mediate granulocytic differentiation of HL-60 cells is shared among distinctly different RA receptors.
Molecular and Cellular Biology | 1999
Barton S. Johnson; Roshantha A. S. Chandraratna; Richard A. Heyman; Elizabeth A. Allegretto; LeMoyne Mueller; Steven J. Collins
ABSTRACT The multiple biologic activities of retinoic acid (RA) are mediated through RAR and retinoid X receptor (RXR) nuclear receptors that interact with specific DNA target sequences as heterodimers (RXR-RAR) or homodimers (RXR-RXR). RA receptor activation appears critical to regulating important aspects of hematopoiesis, since transducing a COOH-terminally truncated RARα exhibiting dominant-negative activity (RARα403) into normal mouse bone marrow generates hematopoietic growth factor-dependent cell lines frozen at the multipotent progenitor (EML) or committed promyelocyte (MPRO) stages. Nevertheless, relatively high, pharmacological concentrations of RA (1 to 10 μM) overcome these differentiation blocks and induce terminal granulocytic differentiation of the MPRO promyelocytes while potentiating interleukin-3 (IL-3)-induced commitment of EML cells to the granulocyte/monocyte lineage. In the present study, we utilized RXR- and RAR-specific agonists and antagonists to determine how RA overcomes the dominant-negative activity of the truncated RARα in these different myeloid developmental stages. Unexpectedly, we observed that an RXR-specific, rather than an RAR-specific, agonist induces terminal granulocytic differentiation of MPRO promyelocytes, and this differentiation is associated with activation of DNA response elements corresponding to RAR-RXR heterodimers rather than RXR-RXR homodimers. This RXR agonist activity is blocked by RAR-specific antagonists, suggesting extensive cross-talk between the partners of the RXR-RARα403 heterodimer. In contrast, in the more immature, multipotent EML cells we observed that this RXR-specific agonist is inactive either in potentiating IL-3-mediated commitment of EML cells to the granulocyte lineage or in transactivating RAR-RXR response elements. RA-triggered GALdbd-RARα hybrid activity in these cells indicates that the multipotent EML cells harbor substantial nuclear hormone receptor coactivator activity. However, the histone deacetylase (HDAC) inhibitor trichostatin A readily activates an RXR-RAR reporter construct in the multipotent EML cells but not in the committed MPRO promyelocytes, indicating that differences in HDAC-containing repressor complexes in these two closely related but distinct hematopoietic lineages might account for the differential activation of the RXR-RARα403 heterodimers that we observed at these different stages of myeloid development.
Journal of Clinical Investigation | 2007
Jutong Si; LeMoyne Mueller; Steven J. Collins
Retinoic acid receptors (RARs) are members of the nuclear hormone receptor family and regulate the proliferation and differentiation of multiple different cell types, including promyelocytic leukemia cells. Here we describe a biochemical/functional interaction between the Ca(2+)/calmodulin-dependent protein kinases (CaMKs) and RARs that modulates the differentiation of myeloid leukemia cells. We observe that CaMKIIgamma is the CaMK that is predominantly expressed in myeloid cells. CaMKII inhibits RAR transcriptional activity, and this enzyme directly interacts with RAR through a CaMKII LxxLL binding motif. CaMKIIgamma phosphorylates RARalpha both in vitro and in vivo, and this phosphorylation inhibits RARalpha activity by enhancing its interaction with transcriptional corepressors. In myeloid cell lines, CaMKIIgamma localizes to RAR target sites within myeloid gene promoters but dissociates from the promoter upon retinoic acid-induced myeloid cell differentiation. KN62, a pharmacological inhibitor of the CaMKs, enhances the terminal differentiation of myeloid leukemia cell lines, and this is associated with a reduction in activated (autophosphorylated) CaMKII in the terminally differentiating cells. These observations reveal a significant cross-talk between Ca(2+) and retinoic acid signaling pathways that regulates the differentiation of myeloid leukemia cells, and they suggest that CaMKIIgamma may provide a new therapeutic target for the treatment of certain human myeloid leukemias.
Leukemia | 2011
Jutong Si; LeMoyne Mueller; Steven J. Collins
GSK3 inhibitors enhance retinoic acid receptor activity and induce the differentiation of retinoic acid-sensitive myeloid leukemia cells
Blood | 2002
Barton S. Johnson; LeMoyne Mueller; Jutong Si; Steven J. Collins
Blood | 1991
Kent A. Robertson; LeMoyne Mueller; Steven J. Collins
Blood Cells Molecules and Diseases | 2007
Jutong Si; LeMoyne Mueller; Aaron D. Schuler; Julian A. Simon; Steven J. Collins
Leukemia Research | 2007
Aaron D. Schuler; Jutong Si; LeMoyne Mueller; Julian A. Simon; Steven J. Collins
Blood Cells Molecules and Diseases | 2009
Jutong Si; LeMoyne Mueller; Aaron D. Schuler; Julian A. Simon; Steven J. Collins