Lena Trotochaud
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lena Trotochaud.
Journal of the American Chemical Society | 2014
Lena Trotochaud; Samantha L. Young; James K. Ranney; Shannon W. Boettcher
Fe plays a critical, but not yet understood, role in enhancing the activity of the Ni-based oxygen evolution reaction (OER) electrocatalysts. We report electrochemical, in situ electrical, photoelectron spectroscopy, and X-ray diffraction measurements on Ni(1-x)Fe(x)(OH)2/Ni(1-x)Fe(x)OOH thin films to investigate the changes in electronic properties, OER activity, and structure as a result of Fe inclusion. We developed a simple method for purification of KOH electrolyte that uses precipitated bulk Ni(OH)2 to absorb Fe impurities. Cyclic voltammetry on rigorously Fe-free Ni(OH)2/NiOOH reveals new Ni redox features and no significant OER current until >400 mV overpotential, different from previous reports which were likely affected by Fe impurities. We show through controlled crystallization that β-NiOOH is less active for OER than the disordered γ-NiOOH starting material and that previous reports of increased activity for β-NiOOH are due to incorporation of Fe-impurities during the crystallization process. Through-film in situ conductivity measurements show a >30-fold increase in film conductivity with Fe addition, but this change in conductivity is not sufficient to explain the observed changes in activity. Measurements of activity as a function of film thickness on Au and glassy carbon substrates are consistent with the hypothesis that Fe exerts a partial-charge-transfer activation effect on Ni, similar to that observed for noble-metal electrode surfaces. These results have significant implications for the design and study of Ni(1-x)Fe(x)OOH OER electrocatalysts, which are the fastest measured OER catalysts under basic conditions.
Journal of the American Chemical Society | 2012
Lena Trotochaud; James K. Ranney; Kerisha N. Williams; Shannon W. Boettcher
Water oxidation is a critical step in water splitting to make hydrogen fuel. We report the solution synthesis, structural/compositional characterization, and oxygen evolution reaction (OER) electrocatalytic properties of ~2-3 nm thick films of NiO(x), CoO(x), Ni(y)Co(1-y)O(x), Ni(0.9)Fe(0.1)O(x), IrO(x), MnO(x), and FeO(x). The thin-film geometry enables the use of quartz crystal microgravimetry, voltammetry, and steady-state Tafel measurements to study the electrocatalytic activity and electrochemical properties of the oxides. Ni(0.9)Fe(0.1)O(x) was found to be the most active water oxidation catalyst in basic media, passing 10 mA cm(-2) at an overpotential of 336 mV with a Tafel slope of 30 mV dec(-1) with oxygen evolution reaction (OER) activity roughly an order of magnitude higher than IrO(x) control films and similar to the best known OER catalysts in basic media. The high activity is attributed to the in situ formation of layered Ni(0.9)Fe(0.1)OOH oxyhydroxide species with nearly every Ni atom electrochemically active. In contrast to previous reports that showed synergy between Co and Ni oxides for OER catalysis, Ni(y)Co(1-y)O(x) thin films showed decreasing activity relative to the pure NiO(x) films with increasing Co content. This finding is explained by the suppressed in situ formation of the active layered oxyhydroxide with increasing Co. The high OER activity and simple synthesis make these Ni-based catalyst thin films useful for incorporating with semiconductor photoelectrodes for direct solar-driven water splitting or in high-surface-area electrodes for water electrolysis.
Journal of the American Chemical Society | 2015
Michaela S. Burke; Matthew G. Kast; Lena Trotochaud; Adam M. Smith; Shannon W. Boettcher
Cobalt oxides and (oxy)hydroxides have been widely studied as electrocatalysts for the oxygen evolution reaction (OER). For related Ni-based materials, the addition of Fe dramatically enhances OER activity. The role of Fe in Co-based materials is not well-documented. We show that the intrinsic OER activity of Co(1-x)Fe(x)(OOH) is ∼100-fold higher for x ≈ 0.6-0.7 than for x = 0 on a per-metal turnover frequency basis. Fe-free CoOOH absorbs Fe from electrolyte impurities if the electrolyte is not rigorously purified. Fe incorporation and increased activity correlate with an anodic shift in the nominally Co(2+/3+) redox wave, indicating strong electronic interactions between the two elements and likely substitutional doping of Fe for Co. In situ electrical measurements show that Co(1-x)Fe(x)(OOH) is conductive under OER conditions (∼0.7-4 mS cm(-1) at ∼300 mV overpotential), but that FeOOH is an insulator with measurable conductivity (2.2 × 10(-2) mS cm(-1)) only at high overpotentials >400 mV. The apparent OER activity of FeOOH is thus limited by low conductivity. Microbalance measurements show that films with x ≥ 0.54 (i.e., Fe-rich) dissolve in 1 M KOH electrolyte under OER conditions. For x < 0.54, the films appear chemically stable, but the OER activity decreases by 16-62% over 2 h, likely due to conversion into denser, oxide-like phases. We thus hypothesize that Fe is the most-active site in the catalyst, while CoOOH primarily provides a conductive, high-surface area, chemically stabilizing host. These results are important as Fe-containing Co- and Ni-(oxy)hydroxides are the fastest OER catalysts known.
Journal of Physics: Condensed Matter | 2017
Lena Trotochaud; Ashley R. Head; Osman Karslıoğlu; Line Kyhl; Hendrik Bluhm
Over the past several decades, ambient pressure x-ray photoelectron spectroscopy (APXPS) has emerged as a powerful technique for in situ and operando investigations of chemical reactions under relevant ambient atmospheres far from ultra-high vacuum conditions. This review focuses on exemplary cases of APXPS experiments, giving special consideration to experimental techniques, challenges, and limitations specific to distinct condensed matter interfaces. We discuss APXPS experiments on solid/vapor interfaces, including the special case of 2D films of graphene and hexagonal boron nitride on metal substrates with intercalated gas molecules, liquid/vapor interfaces, and liquid/solid interfaces, which are a relatively new class of interfaces being probed by APXPS. We also provide a critical evaluation of the persistent limitations and challenges of APXPS, as well as the current experimental frontiers.
Journal of Physical Chemistry A | 2016
Ashley R. Head; Roman Tsyshevsky; Lena Trotochaud; Bryan W. Eichhorn; Maija M. Kuklja; Hendrik Bluhm
Dimethyl methylphosphonate (DMMP) is one of the most widely used molecules to simulate chemical warfare agents in adsorption experiments. However, the details of the electronic structure of the isolated molecule have not yet been reported. We have directly probed the occupied valence and core levels using gas phase photoelectron spectroscopy and the unoccupied states using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Density functional theory (DFT) calculations were used to study the electronic structure, assign the spectral features, and visualize the molecular orbitals. Comparison with parent molecules shows that valence and core-level binding energies of DMMP follow trends of functional group substitution on the P center. The photoelectron and NEXAFS spectra of the isolated molecule will serve as a reference in studies of DMMP adsorbed on surfaces.
Scientific Reports | 2017
Sven Pletincx; Lena Trotochaud; L.I. Fockaert; J.M.C. Mol; Ashley R. Head; Osman Karslıoğlu; Hendrik Bluhm; H. Terryn; Tom Hauffman
Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation.
Catalysis, Structure & Reactivity | 2017
Ashley R. Head; Xin Tang; Zachary Hicks; Linjie Wang; Hannes Bleuel; Scott Holdren; Lena Trotochaud; Yi Yu; Line Kyhl; Osman Karslıoǧlu; Kenan P. Fears; Jeffrey C. Owrutsky; Michael R. Zachariah; Kit H. Bowen; Hendrik Bluhm
Abstract Organophosphonates are used as chemical warfare agents, pesticides, and corrosion inhibitors. New materials for the sorption, detection, and decomposition of these compounds are urgently needed. To facilitate materials and application innovation, a better understanding of the interactions between organophosphonates and surfaces is required. To this end, we have used diffuse reflectance infrared Fourier transform spectroscopy to investigate the adsorption geometry of dimethyl methylphosphonate (DMMP) on MoO3, a material used in chemical warfare agent filtration devices. We further applied ambient pressure X-ray photoelectron spectroscopy and temperature programmed desorption to study the adsorption and desorption of DMMP. While DMMP adsorbs intact on MoO3, desorption depends on coverage and partial pressure. At low coverages under UHV conditions, the intact adsorption is reversible. Decomposition occurs with higher coverages, as evidenced by PCHx and POx decomposition products on the MoO3 surface. Heating under mTorr partial pressures of DMMP results in product accumulation.
Scientific Reports | 2017
Sven Pletincx; Kristof Marcoen; Lena Trotochaud; L.I. Fockaert; J.M.C. Mol; Ashley R. Head; Osman Karslıoğlu; Hendrik Bluhm; H. Terryn; Tom Hauffman
Understanding the stability of chemical interactions at the polymer/metal oxide interface under humid conditions is vital to understand the long-term durability of hybrid systems. Therefore, the interface of ultrathin PMMA films on native aluminum oxide, deposited by reactive adsorption, was studied. The characterization of the interface of the coated substrates was performed using ambient pressure X-ray photoelectron spectroscopy (APXPS), Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The formation of hydrogen bonds and carboxylate ionic bonds at the interface are observed. The formed ionic bond is stable up to 5 Torr water vapour pressure as shown by APXPS. However, when the coated samples are exposed to an excess of aqueous electrolyte, an increase in the amount of carboxylate bonds at the interface, as a result of hydrolysis of the methoxy group, is observed by ATR-FTIR Kretschmann. These observations, supported by ToF-SIMS spectra, lead to the proposal of an adsorption mechanism of PMMA on aluminum oxide, which shows the formation of methanol at the interface and the effect of water molecules on the different interfacial interactions.
Journal of Physical Chemistry Letters | 2017
Andrey Shavorskiy; Xiaofei Ye; Osman Karslıoğlu; Andrey Poletayev; Matthias Hartl; Ioannis Zegkinoglou; Lena Trotochaud; Slavomír Nemšák; Claus M. Schneider; Ethan J. Crumlin; Stephanus Axnanda; Zhi Liu; Philip N. Ross; William C. Chueh; Hendrik Bluhm
Photoelectrochemical water splitting is a promising pathway for the direct conversion of renewable solar energy to easy to store and use chemical energy. The performance of a photoelectrochemical device is determined in large part by the heterogeneous interface between the photoanode and the electrolyte, which we here characterize directly under operating conditions using interface-specific probes. Utilizing X-ray photoelectron spectroscopy as a noncontact probe of local electrical potentials, we demonstrate direct measurements of the band alignment at the semiconductor/electrolyte interface of an operating hematite/KOH photoelectrochemical cell as a function of solar illumination, applied potential, and doping. We provide evidence for the absence of in-gap states in this system, which is contrary to previous measurements using indirect methods, and give a comprehensive description of shifts in the band positions and limiting processes during the photoelectrochemical reaction.
Topics in Current Chemistry | 2015
Candace K. Chan; Harun Tüysüz; Artur Braun; Chinmoy Ranjan; Fabio La Mantia; Benjamin K. Miller; Liuxian Zhang; Peter A. Crozier; Joel A. Haber; John M. Gregoire; Hyun S. Park; Adam S. Batchellor; Lena Trotochaud; Shannon W. Boettcher
In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.