Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lene Krusell is active.

Publication


Featured researches published by Lene Krusell.


Nature | 2002

Shoot control of root development and nodulation is mediated by a receptor-like kinase

Lene Krusell; Lene Heegaard Madsen; Shusei Sato; Grégoire Aubert; Aratz Genua; Krzysztof Szczyglowski; Gérard Duc; Takakazu Kaneko; Satoshi Tabata; Frans J. de Bruijn; Eloísa Pajuelo; Niels Sandal; Jens Stougaard

In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root. Furthermore, a feedback mechanism controls the temporal and spatial susceptibility to infection of the root system. This mechanism is referred to as autoregulation of nodulation, as earlier nodulation events inhibit nodulation of younger root tissues. Lotus japonicus plants homozygous for a mutation in the hypernodulation aberrant root (har1) locus escape this regulation and form an excessive number of nodules. Here we report the molecular cloning and expression analysis of the HAR1 gene and the pea orthologue, Pisum sativum, SYM29. HAR1 encodes a putative serine/threonine receptor kinase, which is required for shoot-controlled regulation of root growth, nodule number, and for nitrate sensitivity of symbiotic development.


Current Biology | 2005

Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development

Thomas Ott; Joost T. van Dongen; Catrin Gu¨nther; Lene Krusell; Guilhem Desbrosses; Helene Vigeolas; Vivien Bock; Tomasz Czechowski; Peter Geigenberger; Michael K. Udvardi

Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted, this hypothesis has never been tested in planta. Using RNAi, we abolished symbiotic leghemoglobin synthesis in nodules of the model legume Lotus japonicus. This caused an increase in nodule free oxygen, a decrease in the ATP/ADP ratio, loss of bacterial nitrogenase protein, and absence of SNF. However, LbRNAi plants grew normally when fertilized with mineral nitrogen. These data indicate roles for leghemoglobins in oxygen transport and buffering and prove for the first time that plant hemoglobins are crucial for symbiotic nitrogen fixation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

Angelique Broghammer; Lene Krusell; Mickael Blaise; Jørgen Sauer; John T. Sullivan; Nicolai N. Maolanon; Maria Vinther; Andrea Lorentzen; Esben Bjørn Madsen; Knud J. Jensen; Peter Roepstorff; Søren Thirup; Clive W. Ronson; Mikkel B. Thygesen; Jens Stougaard

Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man3XylFucGlcNAc4, were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor–ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The Kd values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes.


The Plant Cell | 2005

The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules

Lene Krusell; Katja Krause; Thomas Ott; Guilhem Desbrosses; Ute Krämer; Shusei Sato; Yasukazu Nakamura; Satoshi Tabata; Euan K. James; Niels Sandal; Jens Stougaard; Masayoshi Kawaguchi; Ai Miyamoto; Norio Suganuma; Michael K. Udvardi

Symbiotic nitrogen fixation (SNF) by intracellular rhizobia within legume root nodules requires the exchange of nutrients between host plant cells and their resident bacteria. Little is known at the molecular level about plant transporters that mediate such exchanges. Several mutants of the model legume Lotus japonicus have been identified that develop nodules with metabolic defects that cannot fix nitrogen efficiently and exhibit retarded growth under symbiotic conditions. Map-based cloning of defective genes in two such mutants, sst1-1 and sst1-2 (for symbiotic sulfate transporter), revealed two alleles of the same gene. The gene is expressed in a nodule-specific manner and encodes a protein homologous with eukaryotic sulfate transporters. Full-length cDNA of the gene complemented a yeast mutant defective in sulfate transport. Hence, the gene was named Sst1. The sst1-1 and sst1-2 mutants exhibited normal growth and development under nonsymbiotic growth conditions, a result consistent with the nodule-specific expression of Sst1. Data from a previous proteomic study indicate that SST1 is located on the symbiosome membrane in Lotus nodules. Together, these results suggest that SST1 transports sulfate from the plant cell cytoplasm to the intracellular rhizobia, where the nutrient is essential for protein and cofactor synthesis, including nitrogenase biosynthesis. This work shows the importance of plant sulfate transport in SNF and the specialization of a eukaryotic transporter gene for this purpose.


Nature | 2015

Receptor-mediated exopolysaccharide perception controls bacterial infection

Y. Kawaharada; Simon Kelly; M. Wibroe Nielsen; Christian T. Hjuler; Kira Gysel; Artur Muszyński; Russell W. Carlson; Mikkel B. Thygesen; Niels Sandal; M. H. Asmussen; Maria Vinther; Stig U. Andersen; Lene Krusell; Søren Thirup; Knud J. Jensen; Clive W. Ronson; Mickael Blaise; Simona Radutoiu; Jens Stougaard

Surface polysaccharides are important for bacterial interactions with multicellular organisms, and some are virulence factors in pathogens. In the legume–rhizobium symbiosis, bacterial exopolysaccharides (EPS) are essential for the development of infected root nodules. We have identified a gene in Lotus japonicus, Epr3, encoding a receptor-like kinase that controls this infection. We show that epr3 mutants are defective in perception of purified EPS, and that EPR3 binds EPS directly and distinguishes compatible and incompatible EPS in bacterial competition studies. Expression of Epr3 in epidermal cells within the susceptible root zone shows that the protein is involved in bacterial entry, while rhizobial and plant mutant studies suggest that Epr3 regulates bacterial passage through the plant’s epidermal cell layer. Finally, we show that Epr3 expression is inducible and dependent on host perception of bacterial nodulation (Nod) factors. Plant–bacterial compatibility and bacterial access to legume roots is thus regulated by a two-stage mechanism involving sequential receptor-mediated recognition of Nod factor and EPS signals.


Plant Journal | 2011

Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor‐mediated signalling in cooperation with Nod factor receptor 5

Esben B. Madsen; Meritxell Antolín-Llovera; Christina Grossmann; Juanying Ye; Syndi Vieweg; Angelique Broghammer; Lene Krusell; Simona Radutoiu; Ole Nørregaard Jensen; Jens Stougaard; Martin Parniske

Soil-living rhizobia secrete lipochitin oligosaccharides known as Nod factors, which in Lotus japonicus are perceived by at least two Nod-factor receptors, NFR1 and NFR5. Despite progress in identifying molecular components critical for initial legume host recognition of the microsymbiont and cloning of downstream components, little is known about the activation and signalling mechanisms of the Nod-factor receptors themselves. Here we show that both receptor proteins localize to the plasma membrane, and present evidence for heterocomplex formation initiating downstream signalling. Expression of NFR1 and NFR5 in Nicotiana benthamiana and Allium ampeloprasum (leek) cells caused a rapid cell-death response. The signalling leading to cell death was abrogated using a kinase-inactive variant of NFR1. In these surviving cells, a clear interaction between NFR1 and NFR5 was detected in vivo through bimolecular fluorescence complementation (BiFC). To analyse the inter- and intramolecular phosphorylation events of the kinase complex, the cytoplasmic part of NFR1 was assayed for in vitro kinase activity, and autophosphorylation on 24 amino acid residues, including three tyrosine residues, was found by mass spectrometry. Substitution of the phosphorylated amino acids of NFR1 identified a single phosphorylation site to be essential for NFR1 Nod-factor signalling in vivo and kinase activity in vitro. In contrast to NFR1, no in vitro kinase activity of the cytoplasmic domain of NFR5 was detected. This is further supported by the fact that a mutagenized NFR5 construct, substituting an amino acid essential for ATP binding, restored nodulation of nfr5 mutant roots.


PLOS ONE | 2009

Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants.

Niels Høgslund; Simona Radutoiu; Lene Krusell; Vera Voroshilova; Matthew A. Hannah; Nicolas Goffard; Diego H. Sanchez; Felix Lippold; Thomas Ott; Shusei Sato; Satoshi Tabata; Poul Liboriussen; Gitte Vestergaard Lohmann; Leif Schauser; Georg F. Weiller; Michael K. Udvardi; Jens Stougaard

Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set.


Molecular Plant-microbe Interactions | 2006

Genetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci

Niels Sandal; Thomas Rørby Petersen; Jeremy D. Murray; Yosuke Umehara; Bogumil Karas; Koji Yano; Hirotaka Kumagai; Makoto Yoshikawa; Katsuharu Saito; Masaki Hayashi; Yasuhiro Murakami; Xinwang Wang; Tsuneo Hakoyama; Haruko Imaizumi-Anraku; Shusei Sato; Tomohiko Kato; Wenli Chen; Md. Shakhawat Hossain; Satoshi Shibata; Trevor L. Wang; Keisuke Yokota; Knud Larsen; Norihito Kanamori; Esben Madsen; Simona Radutoiu; Lene Heegaard Madsen; Talida Gratiela Radu; Lene Krusell; Yasuhiro Ooki; Mari Banba

Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.


Plant Journal | 2011

The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation

Lene Krusell; Naoto Sato; Izumi Fukuhara; Bjørn E.V. Koch; Christina Grossmann; Satoru Okamoto; Erika Oka-Kira; Yoko Otsubo; Grégoire Aubert; Tomomi Nakagawa; Shusei Sato; Satoshi Tabata; Gérard Duc; Martin Parniske; Trevor L. Wang; Masayoshi Kawaguchi; Jens Stougaard

The number of root nodules developing on legume roots after rhizobial infection is controlled by the plant shoot through autoregulation and mutational inactivation of this mechanism leads to hypernodulation. We have characterised the Pisum sativum (pea) Sym28 locus involved in autoregulation and shown that it encodes a protein similar to the Arabidopsis CLAVATA2 (CLV2) protein. Inactivation of the PsClv2 gene in four independent sym28 mutant alleles, carrying premature stop codons, results in hypernodulation of the root and changes to the shoot architecture. In the reproductive phase sym28 shoots develops additional flowers, the stem fasciates, and the normal phyllotaxis is perturbed. Mutational substitution of an amino acid in one leucine rich repeat of the corresponding Lotus japonicus LjCLV2 protein results in increased nodulation. Similarly, down-regulation of the Lotus Clv2 gene by RNAi mediated reduction of the transcript level also resulted in increased nodulation. Gene expression analysis of LjClv2 and Lotus hypernodulation aberrant root formation Har1 (previously shown to regulate nodule numbers) indicated they have overlapping organ expression patterns. However, we were unable to demonstrate a direct protein-protein interaction between LjCLV2 and LjHAR1 proteins in contrast to the situation between equivalent proteins in Arabidopsis. LjHAR1 was localised to the plasma membrane using a YFP fusion whereas LjCLV2-YFP localised to the endoplasmic reticulum when transiently expressed in Nicotiana benthamiana leaves. This finding is the most likely explanation for the lack of interaction between these two proteins.


Plant Physiology | 2009

The proteome of seed development in the model legume Lotus japonicus

Svend Secher Dam; Brian S. Laursen; Jane H. Ørnfelt; Bjarne Jochimsen; Hans Henrik Stærfeldt; Carsten Friis; Kasper Nielsen; Nicolas Goffard; Søren Besenbacher; Lene Krusell; Shusei Sato; Satoshi Tabata; Ida B. Thøgersen; Jan J. Enghild; Jens Stougaard

We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family.

Collaboration


Dive into the Lene Krusell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Tabata

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Goffard

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge