Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lenka Munoz is active.

Publication


Featured researches published by Lenka Munoz.


Neuropharmacology | 2010

Targeting p38 MAPK pathway for the treatment of Alzheimer's disease

Lenka Munoz; Alaina J. Ammit

Accumulating evidence indicates that p38 mitogen-activated protein kinase (MAPK) could play more than one role in Alzheimers disease (AD) pathophysiology and that patients suffering from AD dementia could benefit from p38 MAPK inhibitors. The p38 MAPK signalling has been widely accepted as a cascade contributing to neuroinflammation. However, deepening insight into the underlying biology of Alzheimers disease reveals that p38 MAPK operates in other events related to AD, such as excitotoxicity, synaptic plasticity and tau phosphorylation. Although quantification of behavioural improvements upon p38 MAPK inhibition and in vivo evaluation of p38 MAPK significance to various aspects of AD pathology is still missing, the p38 MAPK is emerging as a new Alzheimers disease treatment strategy. Thus, we present here an update on the role of p38 MAPK in neurodegeneration, with a focus on Alzheimers disease, by summarizing recent literature and several key papers from earlier years.


Journal of Neuroinflammation | 2007

A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

Lenka Munoz; Hantamalala Ralay Ranaivo; Saktimayee M. Roy; Wenhui Hu; Jeffrey M. Craft; Laurie K. McNamara; Laura Wing Chico; Linda J. Van Eldik; D. Martin Watterson

BackgroundAn accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimers disease (AD). This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ) and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes.MethodsA novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model.ResultsA novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM) was developed. Oral administration of the compound at a low dose (2.5 mg/kg) resulted in attenuation of excessive proinflammatory cytokine production in the hippocampus back towards normal in the animal model. Animals with attenuated cytokine production had reductions in synaptic dysfunction and hippocampus-dependent behavioral deficits.ConclusionThe p38α MAPK pathway is quantitatively important in the Aβ-induced production of proinflammatory cytokines in hippocampus, and brain p38α MAPK is a viable molecular target for future development of potential disease-modifying therapeutics in AD and related neurodegenerative disorders.


British Journal of Pharmacology | 2013

Interleukins in glioblastoma pathophysiology: implications for therapy

Yiu To Yeung; Kerrie L. McDonald; Thomas Grewal; Lenka Munoz

Despite considerable amount of research, the poor prognosis of patients diagnosed with glioblastoma multiforme (GBM) critically needs new drug development to improve clinical outcomes. The development of an inflammatory microenvironment has long been considered important in the initiation and progression of glioblastoma; however, the success of developing therapeutic approaches to target inflammation for GBM therapy has yet been limited. Here, we summarize the accumulating evidence supporting a role for inflammation in the pathogenesis of glioblastoma, discuss anti‐inflammatory targets that could be relevant for GBM treatment and provide a perspective on the challenges faced in the development of drugs that target GBM inflammation. In particular, we will review the function of IL‐1β, IL‐6 and IL‐8 as well as the potential of kinase inhibitors targeting key players in inflammatory cell signalling cascades such as JAK, JNK and p38 MAPK.


Journal of Neuro-oncology | 2012

p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells

Yiu To Yeung; Nicole S. Bryce; Seray Adams; Nady Braidy; Mari Konayagi; Kerrie L. McDonald; Charles Teo; Gilles J. Guillemin; Thomas Grewal; Lenka Munoz

Increasing evidence suggests that an inflammatory microenvironment promotes invasion by glioblastoma (GBM) cells. Together with p38 mitogen-activated protein kinase (MAPK) activation being regarded as promoting inflammation, we hypothesized that elevated inflammatory cytokine secretion and p38 MAPK activity contribute to expansion of GBMs. Here we report that IL-1β, IL-6, and IL-8 levels and p38 MAPK activity are elevated in human glioblastoma specimens and that p38 MAPK inhibitors attenuate the secretion of pro-inflammatory cytokines by microglia and glioblastoma cells. RNAi knockdown and immunoprecipitation experiments suggest that the p38α MAPK isoform drives inflammation in GBM cells. Importantly, p38 MAPK inhibition strongly reduced invasion of U251 glioblastoma cells in an inflammatory microenvironment, providing evidence for a p38 MAPK-regulated link between inflammation and invasiveness in GBM pathophysiology.


Pharmacology & Therapeutics | 2015

DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications

Ramzi H. Abbassi; Terrance G. Johns; Michael Kassiou; Lenka Munoz

Protein kinases are one of the most studied drug targets in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. Dual-specificity Tyrosine phosphorylation-Regulated Kinase 1A (DYRK1A) has been much less studied compared to many other kinases. DYRK1A primary function occurs during early development, where this protein regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells. Although most extensively characterised for its role in brain development, DYRK1A is over-expressed in a variety of diseases including a number of human malignancies, such as haematological and brain cancers. Here we review the accumulating molecular studies that support our understanding of how DYRK1A signalling could underlie these pathological functions. The relevance of DYRK1A in a number of diseases is also substantiated with intensive drug discovery efforts to develop potent and selective inhibitors of DYRK1A. Several classes of DYRK1A inhibitors have recently been disclosed and some molecules are promising leads to develop DYRK1A inhibitors as drugs for DYRK1A-dependent diseases.


Molecular Pharmacology | 2014

Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Neuroinflammation, Heat Shock Protein 27 Phosphorylation, and Cell Cycle: Role and Targeting

Fadi Maged Shokry Gurgis; William Ziaziaris; Lenka Munoz

Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK-2 or MK2) is a downstream substrate of the p38 MAPK responsible for the signaling events influencing inflammation, cell division and differentiation, apoptosis, and cell motility in response to a wide range of extracellular stimuli. After the failure of p38 MAPK inhibitors in clinical trials, MK2 was unveiled as a potential target to regulate inflammatory cytokines’ mRNA stability and translation. Recent work suggests that this mechanism may underlie the pathophysiology of brain disorders associated with inflammation. In addition, MK2 is a prominent kinase that phosphorylates heat shock protein 27 (Hsp27), an intensively investigated biomarker of cancer progression. This phosphorylation decreases the chaperone properties of Hsp27, making MK2 an endogenous inhibitor of Hsp27. MK2 is also one of the major players in the signal transduction pathways activated in response to DNA damage. Experimental evidence highlights the role of MK2 in G2/M and the mitotic spindle checkpoints, two mechanisms by which MK2 contributes to the maintenance of genomic stability. Thus, MK2 is considered a good molecular target to increase, in combination with chemotherapeutic agents, the sensitivity of treatment, especially in p53-mutated tumors. This review looks at the functions of MK2 in inflammation, Hsp27 regulation, and cell cycle checkpoint control with a focus on brain pathologies. Analysis of MK2 signaling in various disease models and a summary of the data on MK2 inhibitors suggest novel indications for MK2 inhibitors in addition to their mainstream use against peripheral inflammatory disorders.


Cancer Cell | 2016

Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics.

Najoua Lalaoui; Kay Hänggi; Gabriela Brumatti; Diep Chau; Nhu-Y Nguyen; Lazaros Vasilikos; Lisanne M Spilgies; Denise A. Heckmann; Chunyan Ma; Margherita Ghisi; Jessica M. Salmon; Geoffrey M. Matthews; Elisha de Valle; Donia M. Moujalled; Manoj B. Menon; Sukhdeep Kaur Spall; Stefan P. Glaser; Jennifer Richmond; Richard B. Lock; Stephen M. Condon; Raffi Gugasyan; Matthias Gaestel; Mark A. Guthridge; Ricky W. Johnstone; Lenka Munoz; Andrew Wei; Paul G. Ekert; David L. Vaux; W. Wei-Lynn Wong; John Silke

Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.


European Journal of Pharmacology | 2010

Novel p38 MAPK inhibitor ML3403 has potent anti-inflammatory activity in airway smooth muscle

Lenka Munoz; Emma E. Ramsay; Melanie Manetsch; Qi Ge; Christian Peifer; Stefan Laufer; Alaina J. Ammit

SB203580 is the prototypical p38 MAPK inhibitor; however it cannot be used clinically due to liver toxicity. We developed a structural analogue of SB203580 - ML3403 - with equal in vitro and ex vivo p38alpha MAPK inhibition as SB203580, but with reduced activity towards liver cytochrome P450 enzymes. In addition, we developed a selective p38alpha MAPK inhibitor - CP41. The aim of this study is to compare the anti-inflammatory activity of ML3403 and CP41, with SB203580. We compare and contrast the ability of the p38 MAPK inhibitors to repress tumour necrosis factor alpha (TNFalpha)-induced interleukin 6 (IL-6) and interleukin 8 (IL-8) mRNA expression and protein secretion from airway smooth muscle cells. We also examined and compared the binding affinities of ML3403 and SB203580 to the active and inactive p38alpha MAPK. We demonstrate that ML3403 binds to both active and inactive p38 MAPK with high affinity and that it inhibits p38 MAPK-mediated airway smooth muscle synthetic function to an equivalent degree with SB203580. CP41 was not able to reduce IL-6 and IL-8 secretion in airway smooth muscle cells; a function of its higher IC(50) against p38alpha MAPK when compared to SB203580 and ML3403. We show that p38 MAPK-mediated pro-inflammatory pathways in airway smooth muscle cells can be inhibited by ML3403. The anti-inflammatory activity is equivalent to the prototypical p38 MAPK inhibitor SB203580. Our results implicate a future pharmacotherapeutic strategy towards reducing inflammation in asthma and airway remodelling.


Oncogene | 2015

The p38-MK2-HuR pathway potentiates EGFRvIII-IL-1β-driven IL-6 secretion in glioblastoma cells.

Fadi Maged Shokry Gurgis; Yiu To Yeung; M X M Tang; Benjamin Heng; Michael E. Buckland; Alaina J. Ammit; J Haapasalo; H Haapasalo; Gilles J. Guillemin; Thomas Grewal; Lenka Munoz

The microenvironment of glioblastoma (GBM) contains high levels of inflammatory cytokine interleukin 6 (IL-6), which contributes to promote tumour progression and invasion. The common epidermal growth factor receptor variant III (EGFRvIII) mutation in GBM is associated with significantly higher levels of IL-6. Furthermore, elevated IL-1β levels in GBM tumours are also believed to activate GBM cells and enhance IL-6 production. However, the crosstalk between these intrinsic and extrinsic factors within the oncogene-microenvironment of GBM causing overproduction of IL-6 is poorly understood. Here, we show that EGFRvIII potentiates IL-1β-induced IL-6 secretion from GBM cells. Importantly, exacerbation of IL-6 production is most effectively attenuated in EGFRvIII-expressing GBM cells with inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2). Enhanced IL-6 production and increased sensitivity toward pharmacological p38 MAPK and MK2 inhibitors in EGFRvIII-expressing GBM cells is associated with increased MK2-dependent nuclear–cytoplasmic shuttling and accumulation of human antigen R (HuR), an IL-6 mRNA-stabilising protein, in the cytosol. IL-1β-stimulated activation of the p38 MAPK–MK2-HuR pathway significantly enhances IL-6 mRNA stability in GBM cells carrying EGFRvIII. Further supporting a role for the p38 MAPK–MK2-HuR pathway in the development of inflammatory environment in GBM, activated MK2 is found in more than 50% of investigated GBM tissues and correlates with lower grade and secondary GBMs. Taken together, p38 MAPK–MK2-HuR signalling may enhance the potential of intrinsic (EGFRvIII) and extrinsic (IL-1β) factors to develop an inflammatory GBM environment. Hence, further improvement of brain-permeable and anti-inflammatory inhibitors targeting p38 MAPK, MK2 and HuR may combat progression of lower grade gliomas into aggressive GBMs.


Nature Reviews Drug Discovery | 2017

Non-kinase targets of protein kinase inhibitors

Lenka Munoz

Kinome-wide profiling platforms have comprehensively identified the relevant kinases that are targeted by numerous protein kinase inhibitors. However, recent projects have begun to discover non-kinase targets of kinase inhibitors. These non-kinase targets can contribute to the desired or undesired activities of inhibitors, or act as silent bystanders. As a full awareness of a drugs mechanism of action is crucial for the interpretation of results and for successful preclinical and clinical drug development, these discoveries highlight the importance of understanding the pharmacology of kinase inhibitors beyond the kinome. In this Review, I discuss kinase inhibitors for which non-kinase targets have been identified and the application of emerging techniques to validate drug–target engagement in intact cells.

Collaboration


Dive into the Lenka Munoz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terrance G. Johns

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett W. Stringer

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Bryan W. Day

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge