Lennart G. Bongartz
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lennart G. Bongartz.
Circulation Research | 2011
Fatih Arslan; Mirjam B. Smeets; Paul W. Riem Vis; Jacco C. Karper; Paul H.A. Quax; Lennart G. Bongartz; John H. Peters; Imo E. Hoefer; Pieter A. Doevendans; Gerard Pasterkamp; Dominique P.V. de Kleijn
Rationale: The extracellular matrix may induce detrimental inflammatory responses on degradation, causing adverse cardiac remodeling and heart failure. The extracellular matrix protein fibronectin-EDA (EIIIA; EDA) is upregulated after tissue injury and may act as a “danger signal” for leukocytes to cause adverse cardiac remodeling after infarction. Objective: In the present study, we evaluated the role of EDA in regulation of postinfarct inflammation and repair after myocardial infarction. Methods and Results: Wild-type and EDA−/− mice underwent permanent ligation of the left anterior coronary artery. Despite equal infarct size between groups (38.2±4.6% versus 38.2±2.9% of left ventricle; P=0.985), EDA−/− mice exhibited less left ventricular dilatation and enhanced systolic performance compared with wild-type mice as assessed by serial cardiac MRI measurements. In addition, EDA−/− mice exhibited reduced fibrosis of the remote area without affecting collagen production, cross-linking, and deposition in the infarct area. Subsequently, ventricular contractility and relaxation was preserved in EDA−/−. At tissue level, EDA−/− mice showed reduced inflammation, metalloproteinase 2 and 9 activity, and myofibroblast transdifferentiation. Bone marrow transplantation experiments revealed that myocardium-induced EDA and not EDA from circulating cells regulates postinfarct remodeling. Finally, the absence of EDA reduced monocyte recruitment as well as monocytic Toll-like receptor 2 and CD49d expression after infarction. Conclusions: Our study demonstrated that parenchymal fn-EDA plays a critical role in adverse cardiac remodeling after infarction. Absence of fn-EDA enhances survival and cardiac performance by modulating matrix turnover and inflammation via leukocytes and fibroblasts after infarction.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Lennart G. Bongartz; Branko Braam; Marianne C. Verhaar; Maarten J. Cramer; Roel Goldschmeding; Carlo A. J. M. Gaillard; Pieter A. Doevendans; Jaap A. Joles
Left ventricular systolic dysfunction (LVSD) in patients with chronic kidney disease (CKD) is associated with poorer prognosis. Because patients with CKD often exhibit progressively decreased nitric oxide (NO) availability and inhibition of NO production can reduce cardiac output, we hypothesized that loss of NO availability in CKD contributes to pathogenesis of LVSD. Subtotally nephrectomized (SNX) rats were treated with a low dose of the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA; 20 mg/l water; SNX+L-NNA) and compared with relevant control groups. To study permanent changes separate from hemodynamic effects, L-NNA was stopped after week 8 and rats were followed up to week 15, until blood pressure was similar in SNX+L-NNA and SNX groups. To study effects of NO depletion alone, a control group with high-dose L-NNA (L-NNA-High: 100 mg/l) was included. Mild systolic dysfunction developed at week 13 after SNX. In SNX+L-NNA, systolic function decreased by almost 50% already from week 4 onward, together with markedly reduced whole body NO production and high mortality. In L-NNA-High, LVSD was not as severe as in SNX+L-NNA, and renal function was not affected. Both LVSD and NO depletion were reversible in L-NNA-High after L-NNA was stopped, but both were persistently low in SNX+L-NNA. Proteinuria increased compared with rats with SNX, and glomerulosclerosis and cardiac fibrosis were worsened. We conclude that SNX+L-NNA induced accelerated and permanent LVSD that was functionally and structurally different from CKD or NO depletion alone. Availability of NO appears to play a pivotal role in maintaining cardiac function in CKD.
Cell Transplantation | 2012
Arianne van Koppen; Jaap A. Joles; Lennart G. Bongartz; Jens van den Brandt; Holger M. Reichardt; Roel Goldschmeding; Tri Q. Nguyen; Marianne C. Verhaar
Chronic kidney disease (CKD) is a major health care problem. New interventions to slow or prevent disease progression are urgently needed. We studied functional and structural effects of infusion of healthy and CKD bone marrow cells (BMCs) in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX) in Lewis rats, and disease progression was accelerated with l-NNA and 6% NaCl diet. Six weeks after SNX, CKD rats received healthy eGFP+ BMCs, CKD eGFP+ BMCs, or vehicle by single renal artery injection. Healthy BMCs were functionally effective 6 weeks after administration: glomerular filtration rate (GFR; inulin clearance) (0.48 ± 0.16 vs. 0.26 ± 0.14 ml/min/100 g) and effective renal plasma flow (RPF; PAH clearance) (1.6 ± 0.40 vs. 1.0 ± 0.62 ml/min/100 g) were higher in healthy BMC-versus vehicle-treated rats (both p < 0.05). Systolic blood pressure (SBP) and proteinuria were lower 5 weeks after treatment with healthy BMCs versus vehicle (SBP, 151 ± 13 vs. 186 ± 25 mmHg; proteinuria, 33 ± 20 vs. 59 ± 39 mg/day, both p < 0.05). Glomerular capillary density was increased, and less sclerosis was detected after healthy BMCs (both p < 0.05). Tubulointerstitial inflammation was also decreased after healthy BMCs. eGFP+ cells were present in the glomeruli and peritubular capillaries of the remnant kidney in all BMC-treated rats. CKD BMCs also reduced SBP, proteinuria, glomerulosclerosis, and tubular atrophy versus vehicle in CKD rats. However, CKD BMC therapy was not functionally effective versus vehicle [GFR: 0.28 ± 0.09 vs. 0.26 ± 0.16 ml/min/100 g (NS), RPF: 1.15 ± 0.36 vs. 0.78 ± 0.44 ml/min/100 g (NS)], and failed to decrease tubulointerstitial inflammation and fibrosis. Single intrarenal injection of healthy BMCs in rats with established CKD slowed progression of the disease, associated with increased glomerular capillary density and less sclerosis, whereas injection of CKD BMCs was less effective.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Lennart G. Bongartz; Branko Braam; Marianne C. Verhaar; Maarten J. Cramer; Roel Goldschmeding; Carlo A. J. M. Gaillard; Paul Steendijk; Pieter A. Doevendans; Jaap A. Joles
We recently developed a rat model of cardiorenal failure that is characterized by severe left ventricular systolic dysfunction (LVSD) and low nitric oxide (NO) production that persisted after temporary low-dose NO synthase inhibition. We hypothesized that LVSD was due to continued low NO availability and might be reversed by supplementing NO. Rats underwent a subtotal nephrectomy and were treated with low-dose NO synthase inhibition with N(ω)-nitro-l-arginine up to week 8. After 3 wk of washout, rats were treated orally with either the long-acting, tolerance-free NO donor molsidomine (Mols) or vehicle (Veh). Cardiac and renal function were measured on weeks 11, 13, and 15. On week 16, LV hemodynamics and pressure-volume relationships were measured invasively, and rats were killed to quantify histological damage. On week 15, blood pressure was mildly reduced and creatinine clearance was increased by Mols (both P < 0.05). Mols treatment improved ejection fraction (53 ± 3% vs. 37 ± 2% in Veh-treated rats, P < 0.001) and stroke volume (324 ± 33 vs. 255 ± 15 μl in Veh-treated rats, P < 0.05). Rats with Mols treatment had lower end-diastolic pressures (8.5 ± 1.1 mmHg) than Veh-treated rats (16.3 ± 3.5 mmHg, P < 0.05) and reduced time constants of relaxation (21.9 ± 1.8 vs. 30.9 ± 3.3 ms, respectively, P < 0.05). The LV end-systolic pressure-volume relationship was shifted to the left in Mols compared with Veh treatment. In summary, in a model of cardiorenal failure with low NO availability, supplementing NO significantly improves cardiac systolic and diastolic function without a major effect on afterload.
American Journal of Physiology-heart and Circulatory Physiology | 2012
Lennart G. Bongartz; Jaap A. Joles; Marianne C. Verhaar; Maarten J. Cramer; Roel Goldschmeding; Chantal Tilburgs; Carlo A. J. M. Gaillard; Pieter A. Doevendans; Branko Braam
Coexistence of chronic kidney disease (CKD) and heart failure (HF) in humans is associated with poor outcome. We hypothesized that preexistent CKD worsens cardiac outcome after myocardial infarction, and conversely that ensuing HF worsens progression of CKD. Subtotally nephrectomized (SNX) or sham-operated (CON) rats were subjected to coronary ligation (CL) or sham surgery in week 9 to realize four groups: CON, SNX, CON + CL, and SNX + CL. Blood pressure and renal function were measured in weeks 8, 11, 13, and 15. In week 16, cardiac hemodynamics and end-organ damage were assessed. Blood pressure was significantly lower in SNX + CL vs. SNX. Despite this, glomerulosclerosis was more severe in SNX + CL vs. SNX. Two weeks after CL, SNX + CL had more cardiac dilatation compared with CON + CL (end-diastolic volume index: 0.28 ± 0.04 vs. 0.19 ± 0.03 ml/100 g body wt; mean ± SD, P < 0.001), although infarct size was similar. During follow-up in SNX + CL, ejection fraction declined. Mortality was only observed in SNX + CL (2 out of 9). In SNX + CL, end-diastolic pressure (18 ± 4 mmHg) and tau (29 ± 9 ms), the time constant of active relaxation, were significantly higher compared with SNX (13 ± 3 mmHg, 20 ± 4 ms; P < 0.01) and CON + CL (11 ± 5 mmHg, 17 ± 2 ms; P < 0.01). The diameter of small arterioles in the myocardium was significantly decreased in SNX + CL vs. CON + CL (P < 0.01). Urinary excretion of NO metabolites was significantly lower in SNX + CL compared with both CL and SNX. This study demonstrates the existence of more heart and more kidney damage in a new model of combined CKD and HF than in the individual models. Such enhanced damage appears to be separate from systemic hemodynamic changes. Reduced nitric oxide availability may have played a role in both worsened glomerulosclerosis and cardiac diastolic function and appears to be a connector in the cardiorenal syndrome.
Journal of the American College of Cardiology | 2009
Jaap A. Joles; Lennart G. Bongartz; Carlo A. J. M. Gaillard; Branko Braam
Jessup and Constanzo ([1][1]) recently proposed mechanisms explaining the reported inverse relationship between central venous pressure (CVP) and glomerular filtration rate (GFR) in congestive heart failure (CHF) ([2,3][2]). Their figure, depicting the impact of venous congestion, seems implausible
Journal of the American College of Cardiology | 2009
Karien van der Putten; Lennart G. Bongartz; Branko Braam; Carlo A. J. M. Gaillard
The recent publication by Ronco et al. ([1][1]) provides a thorough description of the pathophysiology of the cardiorenal syndrome (CRS) and comes with a proposal for a new classification. The innovative classification is based on the putative causative pathophysiological mechanism that underlies
American Journal of Nephrology | 2016
G. Fenna van Breda; Lennart G. Bongartz; Wenqing Zhuang; Rachel P. L. van Swelm; Jeanne Pertijs; Branko Braam; Maarten-Jan M. Cramer; Dorine W. Swinkels; Pieter A. Doevendans; Marianne C. Verhaar; Roos Masereeuw; Jaap A. Joles; Carlo A. J. M. Gaillard
Background: Hepcidin regulates systemic iron homeostasis by downregulating the iron exporter ferroportin. Circulating hepcidin is mainly derived from the liver but hepcidin is also produced in the heart. We studied the differential and local regulation of hepcidin gene expression in response to myocardial infarction (MI) and/or chronic kidney disease (CKD). We hypothesized that cardiac hepcidin gene expression is induced by and regulated to severity of cardiac injury, either through direct (MI) or remote (CKD) stimuli, as well as through increased local iron content. Methods: Nine weeks after subtotal nephrectomy (SNX) or sham surgery (CON), rats were subjected to coronary ligation (CL) or sham surgery to realize 4 groups: CON, SNX, CL and SNX + CL. In week 16, the gene expression of hepcidin, iron and damage markers in cardiac and liver tissues was assessed by quantitative polymerase chain reaction and ferritin protein expression was studied by immunohistochemistry. Results: Cardiac hepcidin messenger RNA (mRNA) expression was increased 2-fold in CL (p = 0.03) and 3-fold in SNX (p = 0.01). Cardiac ferritin staining was not different among groups. Cardiac hepcidin mRNA expression correlated with mRNA expression levels of brain natriuretic peptide (β = 0.734, p < 0.001) and connective tissue growth factor (β = 0.431, p = 0.02). In contrast, liver hepcidin expression was unaffected by SNX and CL alone, while it had decreased 50% in SNX + CL (p < 0.05). Hepatic ferritin immunostaining was not different among groups. Conclusions: Our data indicate differences in hepcidin regulation in liver and heart and suggest a role for injury rather than iron as the driving force for cardiac hepcidin expression in renocardiac failure.
CardioRenal Medicine | 2015
Lennart G. Bongartz; Siddarth Soni; Maarten-Jan M. Cramer; Paul Steendijk; Carlo A. J. M. Gaillard; Marianne C. Verhaar; Pieter A. Doevendans; Toon A.B. van Veen; Jaap A. Joles; Branko Braam
We have recently described the chronic renocardiac syndrome (CRCS) in rats with renal failure, cardiac dysfunction and low nitric oxide (NO) availability by combining subtotal nephrectomy and transient low-dose NO synthase (NOS) inhibition. Cardiac gene expression of the neuronal isoform of NOS (nNOS) was induced. Hence, we studied the role of nNOS, in vivo cardiac function and β-adrenergic response in our CRCS model by micromanometer/conductance catheter. Left ventricular (LV) hemodynamics were studied during administration of dobutamine (dobu), the highly specific irreversible inhibitor of nNOS L-VNIO [L-N5-(1-Imino-3-butenyl)-ornithine], or both at steady state and during preload reduction. Rats with CRCS showed LV systolic dysfunction at baseline, together with prolonged diastolic relaxation and rightward shift of the end-systolic pressure-volume relationships. After L-VNIO infusion, diastolic relaxation of CRCS rats further prolonged. The time constant of active relaxation (tau) increased by 25 ± 6% from baseline (p < 0.05), and the maximal rate of pressure decrease was 36 ± 7% slower (p < 0.001). These variables did not change in controls. In our CRCS model, nNOS did not seem to affect systolic dysfunction. In summary, in this model of CRCS, blockade of nNOS further worsens diastolic dysfunction and L-VNIO does not influence inherent contractility and the response to dobu stress.
Acta Physiologica | 2017
Nynke R. Oosterhuis; Lennart G. Bongartz; Marianne C. Verhaar; C. Cheng; Y. J. Xu; A. van Koppen; M. J. Cramer; Roel Goldschmeding; C. A. Gaillard; P. A. Doevendans; Branko Braam; Jaap A. Joles
Multiple interacting pathways contribute to progression of renal and cardiac damage in chronic kidney disease followed by chronic heart failure (renocardiac syndrome). We hypothesized that simultaneous pharmacological modulation of critical pathways implicated in renocardiac syndrome would effectively reduce fibrosis in and preserve function of heart and kidney.