Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lennart Holterman is active.

Publication


Featured researches published by Lennart Holterman.


Nature | 2006

Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity.

Diane M. Roberts; Anjali Nanda; Menzo Jans Emco Havenga; Peter Abbink; Diana M. Lynch; Bonnie A. Ewald; Jinyan Liu; Anna R. Thorner; Patricia E. Swanson; Darci A. Gorgone; Michelle A. Lifton; Angelique A. C. Lemckert; Lennart Holterman; Bing Chen; Athmanundh Dilraj; Angela Carville; Keith G. Mansfield; Jaap Goudsmit; Dan H. Barouch

A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of anti-vector immunity. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens have proved highly immunogenic in preclinical studies but will probably be limited by the high prevalence of pre-existing anti-Ad5 immunity in human populations, particularly in the developing world. Here we show that rAd5 vectors can be engineered to circumvent anti-Ad5 immunity. We constructed novel chimaeric rAd5 vectors in which the seven short hypervariable regions (HVRs) on the surface of the Ad5 hexon protein were replaced with the corresponding HVRs from the rare adenovirus serotype Ad48. These HVR-chimaeric rAd5 vectors were produced at high titres and were stable through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 vectors in naive mice and rhesus monkeys. In the presence of high levels of pre-existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was not detectably suppressed, whereas the immunogenicity of parental rAd5 vectors was abrogated. These data demonstrate that functionally relevant Ad5-specific neutralizing antibodies are focused on epitopes located within the hexon HVRs. Moreover, these studies show that recombinant viral vectors can be engineered to circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes on the surface of viral capsid proteins. Such chimaeric viral vectors may have important practical implications for vaccination and gene therapy.


Journal of Virology | 2007

Comparative Seroprevalence and Immunogenicity of Six Rare Serotype Recombinant Adenovirus Vaccine Vectors from Subgroups B and D

Peter Abbink; Angelique A. C. Lemckert; Bonnie A. Ewald; Diana M. Lynch; Matthew Denholtz; Shirley Smits; Lennart Holterman; Irma Damen; Ronald Vogels; Anna R. Thorner; Kara L. O'Brien; Angela Carville; Keith G. Mansfield; Jaap Goudsmit; Menzo Jans Emco Havenga; Dan H. Barouch

ABSTRACT Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.


Journal of Virology | 2005

Immunogenicity of Heterologous Prime-Boost Regimens Involving Recombinant Adenovirus Serotype 11 (Ad11) and Ad35 Vaccine Vectors in the Presence of Anti-Ad5 Immunity

Angelique A. C. Lemckert; Shawn M. Sumida; Lennart Holterman; Ronald Vogels; Diana M. Truitt; Diana M. Lynch; Anjali Nanda; Bonnie A. Ewald; Darci A. Gorgone; Michelle A. Lifton; Jaap Goudsmit; Menzo Jans Emco Havenga; Dan H. Barouch

ABSTRACT The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.


Journal of Clinical Microbiology | 2006

Age Dependence of Adenovirus-Specific Neutralizing Antibody Titers in Individuals from Sub-Saharan Africa

Anna R. Thorner; Ronald Vogels; Jorn Kaspers; Gerrit Jan Weverling; Lennart Holterman; Angelique A. C. Lemckert; Athmanundh Dilraj; Lisa McNally; Prakash Jeena; Soren Jepsen; Peter Abbink; Anjali Nanda; Patricia E. Swanson; Andrew Bates; Kara L. O'Brien; Menzo Jans Emco Havenga; Jaap Goudsmit; Dan H. Barouch

ABSTRACT We assessed neutralizing antibody titers to adenovirus serotype 5 (Ad5) and six rare adenovirus serotypes, serotypes 11, 35, 50, 26, 48, and 49, in pediatric populations in sub-Saharan Africa. We observed a clear age dependence of Ad5-specific neutralizing antibody titers. These data will help to guide the development of Ad vector-based vaccines for human immunodeficiency virus type 1 and other pathogens.


Journal of Immunology | 2007

Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses.

Karin Loré; William C. Adams; Menzo Jans Emco Havenga; Melissa L. Precopio; Lennart Holterman; Jaap Goudsmit; Richard A. Koup

Although replication-incompetent recombinant adenovirus (rAd) type 5 is a potent vaccine vector for stimulating T and B cell responses, high seroprevalence of adenovirus type 5 (Ad5) within human populations may limit its clinical utility. Therefore, alternative adenovirus serotypes have been studied as vaccine vectors. In this study, we characterized the ability of rAd5 and rAd35 to infect and induce maturation of human CD11c+ myeloid dendritic cells (MDCs) and CD123+ plasmacytoid dendritic cells (PDCs), and their ability to stimulate Ag-specific T cells. Both MDCs and PDCs were found to express the primary receptor for Ad35 (CD46) but not Ad5 (coxsackie-adenovirus receptor; CAR). Both dendritic cell (DC) subsets were also more susceptible to rAd35 than to rAd5. MDCs were more susceptible to both rAd35 and rAd5 than were PDCs. Whereas rAd35 used CD46 for entry into DCs, entry of rAd5 may be through a CAR-independent pathway. Exposure to rAd35 but not rAd5 induced high levels of IFN-α in PDCs and phenotypic differentiation in both DC subsets. MDCs and PDCs exposed to either rAd5 or rAd35 encoding for CMV pp65 were able to present pp65 and activate CMV-specific memory CD8+ and CD4+ T cells in a dose-dependent manner, but MDCs stimulated the highest frequencies of pp65-specific T cells. Responding T cells expressed multiple functions including degranulation (CD107a surface mobilization) and production of IFN-γ, IL-2, TNF-α, and MIP-1β. Thus, the ability of rAd35 to naturally target important DC subsets, induce their maturation, and appropriately present Ag to T cells may herald greater in vivo immunogenicity than has been observed with rAd5.


Infection and Immunity | 2006

Immunogenicity and Protection of a Recombinant Human Adenovirus Serotype 35-Based Malaria Vaccine against Plasmodium yoelii in Mice

Olga Ophorst; Katarina Radošević; Menzo Jans Emco Havenga; Maria Grazia Pau; Lennart Holterman; Ben Berkhout; Jaap Goudsmit; M. Tsuji

ABSTRACT Given the promise of recombinant adenovirus type 5 (rAd5) as a malaria vaccine carrier in preclinical models, we evaluated the potency of rAd35 coding for Plasmodium yoelii circumsporozoite protein (rAd35PyCS). We chose rAd35 since a survey with serum samples from African subjects demonstrated that human Ad35 has a much lower seroprevalence of 20% and a much lower geometric mean neutralizing antibody titer (GMT) of 48 compared to Ad5 (seroprevalence, 85%; GMT, 1,261) in countries with a high malaria incidence. We also demonstrated that immunization with rAd35PyCS induced a dose-dependent and potent, CS-specific CD8+ cellular and humoral immune response and conferred significant inhibition (92 to 94%) of liver infection upon high-dose sporozoite challenge. Furthermore, we showed that in mice carrying neutralizing antibody activity against Ad5, mimicking a human situation, CS-specific T- and B-cell responses were significantly dampened after rAd5PyCS vaccination, resulting in loss of inhibition of liver infection upon sporozoite challenge. In contrast, rAd35 vaccine was as potent in naive mice as in Ad5-preimmunized mice. Finally, we showed that heterologous rAd35-rAd5 prime-boost regimens were more potent than rAd35-rAd35 because of induction of anti-Ad35 antibodies after rAd35 priming. The latter data provide a further rationale for developing rAd prime-boost regimens but indicate that priming and boosting Ad vectors must be immunologically distinct and also should be distinct from Ad5. Collectively, the data presented warrant further development of rAd35-based vaccines against human malaria.


Journal of General Virology | 2009

Adenovirus serotype 5 infects human dendritic cells via a coxsackievirus-adenovirus receptor-independent receptor pathway mediated by lactoferrin and DC-SIGN.

William C. Adams; Emily Bond; Menzo Jans Emco Havenga; Lennart Holterman; Jaap Goudsmit; Gunilla B. Karlsson Hedestam; Richard A. Koup; Karin Loré

The coxsackievirus-adenovirus receptor (CAR) is the described primary receptor for adenovirus serotype 5 (Ad5), a common human pathogen that has been exploited as a viral vector for gene therapy and vaccination. This study showed that monocytes and dendritic cells (DCs), such as freshly isolated human blood myeloid DCs, plasmacytoid DCs and monocyte-derived DCs, are susceptible to recombinant Ad5 (rAd5) infection despite their lack of CAR expression. Langerhans cells and dermal DCs from skin expressed CAR, but blocking CAR only partly decreased rAd5 infection, together suggesting that other receptor pathways mediate viral entry of these cells. Lactoferrin (Lf), an abundant protein in many bodily fluids known for its antiviral and antibacterial properties, promoted rAd5 infection in all cell populations except plasmacytoid DCs using a CAR-independent process. Lf caused phenotypic differentiation of the DCs, but cell activation played only a minor role in the increase in infection frequencies. The C-type lectin receptor DC-SIGN facilitated viral entry of rAd5-Lf complexes and this was dependent on high-mannose-type N-linked glycans on Lf. These results suggest that Lf present at high levels at mucosal sites can facilitate rAd5 attachment and enhance infection of DCs. A better understanding of the tropism and receptor mechanisms of Ad5 may help explain Ad5 pathogenesis and guide the engineering of improved rAd vectors.


Biotechnology and Bioengineering | 2008

Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: High yield and preserved bioactivity†

Menzo Jans Emco Havenga; Lennart Holterman; I. Melis; Shirley Smits; Jorn Kaspers; E. Heemskerk; R.A.A. van der Vlugt; Martin Koldijk; Govert Johan Schouten; G. Hateboer; K. Brouwer; Ronald Vogels; Jaap Goudsmit

Stable E1 transformed cells, like PER.C6, are able to grow at scale and to high cell densities. E1‐deleted adenoviruses replicate to high titer in PER.C6 cells whereas subsequent deletion of E2A from the vector results in absence of replication in PER.C6 cells and drastically lowers the expression of adenovirus proteins in such cells. We therefore considered the use of an ΔE1/ΔE2 type 5 vector (Ad5) to deliver genes to PER.C6 cells growing in suspension with the aim to achieve high protein yield. To evaluate the utility of this system we constructed ΔE1/ΔE2 vector carrying different classes of protein, that is, the gene coding for spike protein derived from the Coronavirus causing severe acute respiratory syndrome (SARS‐CoV), a gene coding for the SARS‐CoV receptor or the genes coding for an antibody shown to bind and neutralize SARS‐CoV (SARS‐AB). The ΔE1/ΔE2A‐vector backbones were rescued on a PER.C6 cell line engineered to constitutively over express the Ad5 E2A protein. Exposure of PER.C6 cells to low amounts (30 vp/cell) of ΔE1/ΔE2 vectors resulted in highly efficient (>80%) transduction of PER.C6 cells growing in suspension. The efficient cell transduction resulted in high protein yield (up to 60 picogram/cell/day) in a 4 day batch production protocol. FACS and ELISA assays demonstrated the biological activity of the transiently produced proteins. We therefore conclude that ΔE1/ΔE2 vectors in combination with the PER.C6 technology may provide a viable answer to the increasing demand for high quality, high yield recombinant protein. Biotechnol. Bioeng. 2008;100: 273–283.


Biochemical Journal | 2002

Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family.

Thierry Joët; Lennart Holterman; Timothy T. Stedman; Clemens H. M. Kocken; Annemarie van der Wel; Alan W. Thomas; Sanjeev Krishna

Chemotherapy of apicomplexan parasites is limited by emerging drug resistance or lack of novel targets. PfHT1, the Plasmodium falciparum hexose transporter 1, is a promising new drug target because asexual-stage malarial parasites depend wholly on glucose for energy. We have performed a comparative functional characterization of PfHT1 and hexose transporters of the simian malarial parasite P. knowlesi (PkHT1), the rodent parasite P. yoelii (PyHT1) and the human apicomplexan parasite Toxoplasma gondii ( T. gondii glucose transporter 1, TgGT1). PkHT1 and PyHT1 share >70% amino acid identity with PfHT1, while TgGT1 is more divergent (37.2% identity). All transporters mediate uptake of D-glucose and D-fructose. PyHT1 has an affinity for glucose ( K (m) approximately 0.12 mM) that is higher than that for PkHT1 ( K (m) approximately 0.67 mM) or PfHT1 ( K (m) approximately 1 mM). TgGT1 is highly temperature dependent (the Q (10) value, the fold change in activity for a 10 degrees C change in temperature, was >7) compared with Plasmodium transporters ( Q (10), 1.5-2.5), and overall has the highest affinity for glucose ( K (m) approximately 30 microM). Using active analogues in competition for glucose uptake, experiments show that hydroxyl groups at the C-3, C-4 and C-6 positions are important in interacting with PkHT1, PyHT1 and TgGT1. This study defines models useful to study the biology of apicomplexan hexose permeation pathways, as well as contributing to drug development.


Journal of Virology | 2008

Differential antigen requirements for protection against systemic and intranasal vaccinia virus challenges in mice

David R. Kaufman; Jaap Goudsmit; Lennart Holterman; Bonnie A. Ewald; Matthew Denholtz; Colleen Devoy; Ayush Giri; Lauren E. Grandpre; Jean-Michel Heraud; Genoveffa Franchini; Michael S. Seaman; Menzo Jans Emco Havenga; Dan H. Barouch

ABSTRACT The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding protective antigens and the requirement for multiple boost immunizations to afford protective immunity. Here we explore the protective efficacy of replication-incompetent, recombinant adenovirus serotype 35 (rAd35) vectors expressing the vaccinia virus intracellular mature virion (IMV) antigens A27L and L1R and extracellular enveloped virion (EEV) antigens A33R and B5R in a murine vaccinia virus challenge model. A single immunization with the rAd35-L1R vector effectively protected mice against a lethal systemic vaccinia virus challenge. The rAd35-L1R vector also proved more efficacious than the combination of four rAd35 vectors expressing A27L, L1R, A33R, and B5R. Moreover, serum containing L1R-specific neutralizing antibodies afforded postexposure prophylaxis after systemic vaccinia virus infection. In contrast, the combination of rAd35-L1R and rAd35-B5R vectors was required to protect mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-specific immune responses are important following intranasal infection. Taken together, these data demonstrate that different protective antigens are required based on the route of vaccinia virus challenge. These studies also suggest that rAd vectors warrant further assessment as candidate subunit smallpox vaccines.

Collaboration


Dive into the Lennart Holterman's collaboration.

Researchain Logo
Decentralizing Knowledge