Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leo Q. Wan is active.

Publication


Featured researches published by Leo Q. Wan.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Engineering anatomically shaped human bone grafts

Warren L. Grayson; Mirjam Fröhlich; Keith Yeager; Sarindr Bhumiratana; M. Ete Chan; Christopher Cannizzaro; Leo Q. Wan; X. Sherry Liu; X. Edward Guo; Gordana Vunjak-Novakovic

The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a “biomimetic” scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle—in vitro cultivation of viable bone grafts of complex geometries—to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Composite scaffold provides a cell delivery platform for cardiovascular repair

Amandine Godier-Furnemont; Timothy P. Martens; Michael S. Koeckert; Leo Q. Wan; Jonathan Parks; Kotaro Arai; Geping Zhang; Barry I. Hudson; Shunichi Homma; Gordana Vunjak-Novakovic

Control over cell engraftment, survival, and function remains critical for heart repair. We have established a tissue engineering platform for the delivery of human mesenchymal progenitor cells (MPCs) by a fully biological composite scaffold. Specifically, we developed a method for complete decellularization of human myocardium that leaves intact most elements of the extracellular matrix, as well as the underlying mechanical properties. A cell–matrix composite was constructed by applying fibrin hydrogel with suspended cells onto decellularized sheets of human myocardium. We then implanted this composite onto the infarct bed in a nude rat model of cardiac infarction. We next characterized the myogenic and vasculogenic potential of immunoselected human MPCs and demonstrated that in vitro conditioning with a low concentration of TGF-β promoted an arteriogenic profile of gene expression. When implanted by composite scaffold, preconditioned MPCs greatly enhanced vascular network formation in the infarct bed by mechanisms involving the secretion of paracrine factors, such as SDF-1, and the migration of MPCs into ischemic myocardium, but not normal myocardium. Echocardiography demonstrated the recovery of baseline levels of left ventricular systolic dimensions and contractility when MPCs were delivered via composite scaffold. This adaptable platform could be readily extended to the delivery of other reparative cells of interest and used in quantitative studies of heart repair.


Current Stem Cell Research & Therapy | 2008

Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance.

Mirjam Fröhlich; Warren L. Grayson; Leo Q. Wan; Darja Marolt; Matej Drobnic; Gordana Vunjak-Novakovic

The tremendous need for bone tissue in numerous clinical situations and the limited availability of suitable bone grafts are driving the development of tissue engineering approaches to bone repair. In order to engineer viable bone grafts, one needs to understand the mechanisms of native bone development and fracture healing, as these processes should ideally guide the selection of optimal conditions for tissue culture and implantation. Engineered bone grafts have been shown to have capacity for osteogenesis, osteoconduction, osteoinduction and osteointegration - functional connection between the host bone and the graft. Cells from various anatomical sources in conjunction with scaffolds and osteogenic factors have been shown to form bone tissue in vitro. The use of bioreactor systems to culture cells on scaffolds before implantation further improved the quality of the resulting bone grafts. Animal studies confirmed the capability of engineered grafts to form bone and integrate with the host tissues. However, the vascularization of bone remains one of the hurdles that need to be overcome if clinically sized, fully viable bone grafts are to be engineered and implanted. We discuss here the biological guidelines for tissue engineering of bone, the bioreactor cultivation of human mesenchymal stem cells on three-dimensional scaffolds, and the need for vascularization and functional integration of bone grafts following implantation.


Cell Transplantation | 2009

Percutaneous Cell Delivery Into the Heart Using Hydrogels Polymerizing In Situ

Timothy P. Martens; Amandine Godier; Jonathan Parks; Leo Q. Wan; Michael S. Koeckert; George Eng; Barry I. Hudson; Warren Sherman; Gordana Vunjak-Novakovic

Heart disease is the leading cause of death in the US. Following an acute myocardial infarction, a fibrous, noncontractile scar develops, and results in congestive heart failure in more than 500,000 patients in the US each year. Muscle regeneration and the induction of new vascular growth to treat ischemic disorders of the heart can have significant therapeutic implications. Early studies in patients with chronic ischemic systolic left ventricular dysfunction (SLVD) using skeletal myoblasts or bone marrow-derived cells report improvement in left ventricular ejection function (LVEF) and clinical status, without notable safety issues. Nonetheless, the efficacy of cell transfer for cardiovascular disease is not established, in part due to a lack of control over cell retention, survival, and function following delivery. We studied the use of biocompatible hydrogels polymerizable in situ as a cell delivery vehicle, to improve cell retention, survival, and function following delivery into the ischemic myocardium. The study was conducted using human bone marrow-derived mesenchymal stem cells and fibrin glue, but the methods are applicable to any human stem cells (adult or embryonic) and a wide range of hydrogels. We first evaluated the utility of several commercially available percutaneous catheters for delivery of viscous cell/hydrogel suspensions. Next we characterized the polymerization kinetics of fibrin glue solutions to define the ranges of concentrations compatible with catheter delivery. We then demonstrate the in vivo effectiveness of this preparation and its ability to increase cell retention and survival in a nude rat model of myocardial infarction.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry

Leo Q. Wan; Kacey Ronaldson; Miri Park; Grace Taylor; Yue Zhang; Jeffrey M. Gimble; Gordana Vunjak-Novakovic

Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10-185) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.


Journal of Cardiovascular Translational Research | 2011

Hybrid Gel Composed of Native Heart Matrix and Collagen Induces Cardiac Differentiation of Human Embryonic Stem Cells without Supplemental Growth Factors

Yi Duan; Zen Liu; John D. O’Neill; Leo Q. Wan; Donald O. Freytes; Gordana Vunjak-Novakovic

Our goal was to assess the ability of native heart extracellular matrix (ECM) to direct cardiac differentiation of human embryonic stem cells (hESCs) in vitro. In order to probe the effects of cardiac matrix on hESC differentiation, a series of hydrogels was prepared from decellularized ECM from porcine hearts by mixing ECM and collagen type I at varying ratios. Maturation of cardiac function in embryoid bodies formed from hESCs was documented in terms of spontaneous contractile behavior and the mRNA and protein expression of cardiac markers. Hydrogel with high ECM content (75% ECM, 25% collagen, no supplemental soluble factors) increased the fraction of cells expressing cardiac marker troponin T, when compared with either hydrogel with low ECM content (25% ECM, 75% collagen, no supplemental soluble factors) or collagen hydrogel (100% collagen, with supplemental soluble factors). Furthermore, cardiac maturation was promoted in high-ECM content hydrogels, as evidenced by the striation patterns of cardiac troponin I and by upregulation of Cx43 gene. Consistently, high-ECM content hydrogels improved the contractile function of cardiac cells, as evidenced by increased numbers of contracting cells and increased contraction amplitudes. The ability of native ECM hydrogel to induce cardiac differentiation of hESCs without the addition of soluble factors makes it an attractive biomaterial system for basic studies of cardiac development and potentially for the delivery of therapeutic cells into the heart.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation.

Sarindr Bhumiratana; Ryan E. Eton; Sevan R. Oungoulian; Leo Q. Wan; Gerard A. Ateshian; Gordana Vunjak-Novakovic

Significance The ability to regenerate functional cartilage from adult human mesenchymal stem cells would have tremendous clinical impact. Despite significant efforts, mechanically functional human cartilage has not been grown in vitro. We report engineering of functional human cartilage from mesenchymal stem cells, by mimicking the physiologic developmental process of mesenchymal cell condensation. Condensed mesenchymal bodies were induced to fuse and form mechanically functional cartilaginous tissue interfacing with bone, without using a scaffolding material. We demonstrate that this simple “biomimetic” approach can be used to generate centimeter-sized, anatomically shaped pieces of human cartilage with physiologic stratification and mechanical properties. Functional human cartilage grown from a patient’s own cells using this method could greatly accelerate the development of new therapeutic modalities for cartilage repair. The efforts to grow mechanically functional cartilage from human mesenchymal stem cells have not been successful. We report that clinically sized pieces of human cartilage with physiologic stratification and biomechanics can be grown in vitro by recapitulating some aspects of the developmental process of mesenchymal condensation. By exposure to transforming growth factor-β, mesenchymal stem cells were induced to condense into cellular bodies, undergo chondrogenic differentiation, and form cartilagenous tissue, in a process designed to mimic mesenchymal condensation leading into chondrogenesis. We discovered that the condensed mesenchymal cell bodies (CMBs) formed in vitro set an outer boundary after 5 d of culture, as indicated by the expression of mesenchymal condensation genes and deposition of tenascin. Before setting of boundaries, the CMBs could be fused into homogenous cellular aggregates giving rise to well-differentiated and mechanically functional cartilage. We used the mesenchymal condensation and fusion of CMBs to grow centimeter-sized, anatomically shaped pieces of human articular cartilage over 5 wk of culture. For the first time to our knowledge biomechanical properties of cartilage derived from human mesenchymal cells were comparable to native cartilage, with the Young’s modulus of >800 kPa and equilibrium friction coeffcient of <0.3. We also demonstrate that CMBs have capability to form mechanically strong cartilage–cartilage interface in an in vitro cartilage defect model. The CMBs, which acted as “lego-like” blocks of neocartilage, were capable of assembling into human cartilage with physiologic-like structure and mechanical properties.


Journal of Tissue Engineering and Regenerative Medicine | 2011

Optimization of electrical stimulation parameters for cardiac tissue engineering.

Nina Tandon; Anna Marsano; Robert Maidhof; Leo Q. Wan; Hyoungshin Park; Gordana Vunjak-Novakovic

In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge‐injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin‐I and connexin‐43 and the best‐developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. Copyright


Integrative Biology | 2010

Geometric control of human stem cell morphology and differentiation.

Leo Q. Wan; Sylvia M. Kang; George Eng; Warren L. Grayson; Xin L. Lu; Bo Huo; Jeffrey M. Gimble; X. Edward Guo; Van C. Mow; Gordana Vunjak-Novakovic

During tissue morphogenesis, stem cells and progenitor cells migrate, proliferate, and differentiate, with striking changes in cell shape, size, and acting mechanical stresses. The local cellular function depends on the spatial distribution of cytokines as well as local mechanical microenvironments in which the cells reside. In this study, we controlled the organization of human adipose derived stem cells using micro-patterning technologies, to investigate the influence of multi-cellular form on spatial distribution of cellular function at an early stage of cell differentiation. The underlying role of cytoskeletal tension was probed through drug treatment. Our results show that the cultivation of stem cells on geometric patterns resulted in pattern- and position-specific cell morphology, proliferation and differentiation. The highest cell proliferation occurred in the regions with large, spreading cells (such as the outer edge of a ring and the short edges of rectangles). In contrast, stem cell differentiation co-localized with the regions containing small, elongated cells (such as the inner edge of a ring and the regions next to the short edges of rectangles). The application of drugs that inhibit the formation of actomyosin resulted in the lack of geometrically specific differentiation patterns. This study confirms the role of substrate geometry on stem cell differentiation, through associated physical forces, and provides a simple and controllable system for studying biophysical regulation of cell function.


Journal of Cellular Biochemistry | 2009

Geometry and force control of cell function

Donald O. Freytes; Leo Q. Wan; Gordana Vunjak-Novakovic

Tissue engineering is becoming increasingly ambitious in its efforts to create functional human tissues, and to provide stem cell scientists with culture systems of high biological fidelity. Novel engineering designs are being guided by biological principles, in an attempt to recapitulate more faithfully the complexities of native cellular milieu. Three‐dimensional (3D) scaffolds are being designed to mimic native‐like cell environments and thereby elicit native‐like cell responses. Also, the traditional focus on molecular regulatory factors is shifting towards the combined application of molecular and physical factors. Finally, methods are becoming available for the coordinated presentation of molecular and physical factors in the form of controllable spatial and temporal gradients. Taken together, these recent developments enable the interrogation of cellular behavior within dynamic culture settings designed to mimic some aspects of native tissue development, disease, or regeneration. We discuss here these advanced cell culture environments, with emphasis on the derivation of design principles from the development (the biomimetic paradigm) and the geometry‐force control of cell function (the biophysical regulation paradigm). J. Cell. Biochem. 108: 1047–1058, 2009.

Collaboration


Dive into the Leo Q. Wan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Lucas Lu

University of Delaware

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn Worley

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmad E. Abu-Hakmeh

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Raymond

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Poulomi Ray

Rensselaer Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge