Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X. cas Lu is active.

Publication


Featured researches published by X. cas Lu.


Journal of Bone and Mineral Research | 2012

Osteocytic Network Is More Responsive in Calcium Signaling Than Osteoblastic Network Under Fluid Flow

X. Lucas Lu; Bo Huo; Victor Chiang; X. Edward Guo

Osteocytes, regarded as the mechanical sensor in bone, respond to mechanical stimulation by activating biochemical pathways and mediating the cellular activities of other bone cells. Little is known about how osteocytic networks respond to physiological mechanical stimuli. In this study, we compared the mechanical sensitivity of osteocytic and osteoblastic networks under physiological‐related fluid shear stress (0.5 to 4 Pa). The intracellular calcium ([Ca2+]i) responses in micropatterned in vitro osteoblastic or osteocytic networks were recorded and analyzed. Osteocytes in the network showed highly repetitive spikelike [Ca2+]i peaks under fluid flow stimulation, which are dramatically different from those in the osteoblastic network. The number of responsive osteocytes in the network remained at a constant high percentage (>95%) regardless of the magnitude of shear stress, whereas the number of responsive osteoblasts in the network significantly depends on the strength of fluid flow. All spatiotemporal parameters of calcium signaling demonstrated that osteocytic networks are more sensitive and dynamic than osteoblastic networks, especially under low‐level mechanical stimulations. Furthermore, pathway studies were performed to identify the molecular mechanisms responsible for the differences in [Ca2+]i signaling between osteoblastic and osteocytic networks. The results suggested that the T‐type voltage‐gated calcium channels (VGCC) expressed on osteocytes may play an essential role in the unique kinetics of [Ca2+]i signaling in osteocytic networks, whereas the L‐type VGCC is critical for both types of cells to release multiple [Ca2+]i peaks. The extracellular calcium source and intracellular calcium store in ER‐, ATP‐, PGE2‐, NO‐, and caffeine‐related pathways are found to play similar roles in the [Ca2+]i signaling for both osteoblasts and osteocytes. The findings in this study proved that osteocytic networks possess unique characteristics in sensing and processing mechanical signals.


Bone | 2012

Calcium response in osteocytic networks under steady and oscillatory fluid flow.

X. Lucas Lu; Bo Huo; Miri Park; X. Edward Guo

The fluid flow in the lacunar-canalicular system of bone is an essential mechanical stimulation on the osteocyte networks. Due to the complexity of human physical activities, the fluid shear stress on osteocyte bodies and processes consists of both steady and oscillatory components. In this study, we investigated and compared the intracellular calcium ([Ca(2+)](i)) responses of osteocytic networks under steady and oscillatory fluid flows. An in vitro osteocytic network was built with MLO-Y4 osteocyte-like cells using micro-patterning techniques to simulate the in vivo orderly organization of osteocyte networks. Sinusoidal oscillating fluid flow or unidirectional steady flow was applied on the cell surface with 2Pa peak shear stress. It was found that the osteocytic networks were significantly more responsive to steady flow than to oscillatory flow. The osteocytes can release more calcium peaks with higher magnitudes at a faster speed under steady flow stimulation. The [Ca(2+)](i) signaling transients under the steady and oscillatory flows have significantly different spatiotemporal characters, but a similar responsive percentage of cells. Further signaling pathway studies using inhibitors showed that endoplasmic reticulum (ER) calcium store, extracellular calcium source, ATP, PGE(2) and NO related pathways play similar roles in the [Ca(2+)](i) signaling of osteocytes under either steady or oscillating flow. The spatiotemporal characteristics of [Ca(2+)](i) transients under oscillating fluid flow are affected more profoundly by pharmacological treatments than under the steady flow. Our findings support the hypothesis that the [Ca(2+)](i) responses of osteocytic networks are significantly dependent on the profiles of fluid flow.


The FASEB Journal | 2014

In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading

Da Jing; Andrew D. Baik; X. Lucas Lu; Bin Zhou; Xiaohan Lai; Liyun Wang; Erping Luo; X. Edward Guo

Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca2+) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca2+ responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid‐induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca2+ spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca2+ oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca2+ oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.—Jing, D., Baik, A. D., Lu, X. L., Zhou, B., Lai, X., Wang, L., Luo, E., Guo, X. E. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J. 28, 28–1582 (1592). www.fasebj.org


Journal of Biomechanics | 2014

Dependence of mechanical properties of trabecular bone on plate–rod microstructure determined by individual trabecula segmentation (ITS)

Bin Zhou; X. Sherry Liu; Ji Wang; X. Lucas Lu; Aaron J. Fields; X. Edward Guo

Individual trabecula segmentation (ITS) technique can decompose the trabecular bone network into individual trabecular plates and rods and is capable of quantifying the plate/rod-related microstructural characteristics of trabecular bone. This novel technique has been shown to be able to provide in-depth insights into micromechanics and failure mechanisms of human trabecular bone, as well as to distinguish the fracture status independent of area bone mineral density in clinical applications. However, the plate/rod microstructural parameters from ITS have never been correlated to experimentally determined mechanical properties of human trabecular bone. In this study, on-axis cylindrical trabecular bone samples from human proximal tibia (n=22), vertebral body (n=10), and proximal femur (n=21) were harvested, prepared, scanned using micro computed-tomography (µCT), analyzed with ITS and mechanically tested. Regression analyses showed that the plate bone volume fraction (pBV/TV) and axial bone volume fraction (aBV/TV) calculated by ITS analysis correlated the best with elastic modulus (R(2)=0.96-0.97) and yield strength (R(2)=0.95-0.96). Trabecular plate-related microstructural parameters correlated highly with elastic modulus and yield strength, while most rod-related parameters were found inversely and only moderately correlated with the mechanical properties. In addition, ITS analysis also identified that trabecular bone at human femoral neck had the highest trabecular plate-related parameters while the other sites were similar with each other in terms of plate-rod microstructure.


Bone | 2013

Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow

Da Jing; X. Lucas Lu; Erping Luo; Paul Sajda; Pui L. Leong; X. Edward Guo

Mechanical stimuli can trigger intracellular calcium (Ca(2+)) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca(2+) signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca(2+) signals of bone cells in the network. We demonstrated that the ICA-based technology could yield higher signal fidelity than the manual region of interest (ROI) method. Second, the spatiotemporal properties of Ca(2+) signaling in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cell networks under laminar and steady fluid flow stimulation were systematically analyzed and compared. MLO-Y4 cells exhibited much more active Ca(2+) transients than MC3T3-E1 cells, evidenced by more Ca(2+) peaks, less time to the 1st peak and less time between the 1st and 2nd peaks. With respect to temporal properties, MLO-Y4 cells demonstrated higher spike rate and Ca(2+) oscillating frequency. The spatial intercellular synchronous activities of Ca(2+) signaling in MLO-Y4 cell networks were higher than those in MC3T3-E1 cell networks and also negatively correlated with the intercellular distance, revealing faster Ca(2+) wave propagation in MLO-Y4 cell networks. Our findings show that the unsupervised ICA-based technique results in more sensitive and quantitative signal extraction than traditional ROI analysis, with the potential to be widely employed in Ca(2+) signaling extraction in the cell networks. The present study also revealed a dramatic spatiotemporal difference in Ca(2+) signaling for osteocytic and osteoblastic cell networks in processing the mechanical stimulus. The higher intracellular Ca(2+) oscillatory behaviors and intercellular coordination of MLO-Y4 cells provided further evidences that osteocytes may behave as the major mechanical sensor in bone modeling and remodeling processes.


Bone | 2015

Bone's responses to mechanical loading are impaired in type 1 diabetes

Ashutosh Parajuli; Chao Liu; Wen Li; Xiaoyu Gu; Xiaohan Lai; Shaopeng Pei; Christopher Price; Lidan You; X. Lucas Lu; Liyun Wang

Diabetes adversely impacts many organ systems including the skeleton. Clinical trials have revealed a startling elevation in fracture risk in diabetic patients. Bone fractures can be life threatening: nearly 1 in 6 hip fracture patients die within one year. Because physical exercise is proven to improve bone properties and reduce fracture risk in non-diabetic subjects, we tested its efficacy in type 1 diabetes. We hypothesized that diabetic bones response to anabolic mechanical loading would be attenuated, partially due to impaired mechanosensing of osteocytes under hyperglycemia. Heterozygous C57BL/6-Ins2(Akita)/J (Akita) male and female diabetic mice and their age- and gender-matched wild-type (WT) C57BL/6J controls (7-month-old, N=5-7 mice/group) were subjected to unilateral axial ulnar loading with a peak strain of 3500 με at 2 Hz and 3 min/day for 5 days. The Akita female mice, which exhibited a relatively normal body weight and a mild 40% elevation of blood glucose level, responded with increased bone formation (+6.5% in Ct.B.Ar, and 4 to 36-fold increase in Ec.BFR/BS and Ps.BFR/BS), and the loading effects, in terms of changes of static and dynamic indices, did not differ between Akita and WT females (p ≥ 0.1). However, loading-induced anabolic effects were greatly diminished in Akita males, which exhibited reduced body weight, severe hyperglycemia (+230%), diminished bone formation (ΔCt.B.Ar: 0.003 vs. 0.030 mm(2), p=0.005), and suppressed periosteal bone appositions (ΔPs.BFR/BS, p=0.02). Hyperglycemia (25 mM glucose) was further found to impair the flow-induced intracellular calcium signaling in MLO-Y4 osteocytes, and significantly inhibited the flow-induced downstream responses including reduction in apoptosis and sRANKL secretion and PGE2 release. These results, along with previous findings showing adverse effects of hyperglycemia on osteoblasts and mesenchymal stem cells, suggest that failure to maintain normal glucose levels may impair bones responses to mechanical loading in diabetics.


Journal of Biomechanics | 2015

Biomechanical properties of murine meniscus surface via AFM-based nanoindentation.

Qing Li; Basak Doyran; Laura W. Gamer; X. Lucas Lu; Ling Qin; Christine Ortiz; Alan J. Grodzinsky; Vicki Rosen; Lin Han

This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip≈5µm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction. The indentation resistance was calculated as both the effective modulus, Eind, via the isotropic Hertz model, and the effective stiffness, Sind = dF/dD. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1±0.8MPa for 12 weeks of age, mean±SEM, n=13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4±0.1MPa, n=6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models.


Scientific Reports | 2015

Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures.

Ajay Singh; Michael Raymond; Fabiano Pace; Anthony Certo; Jonathan M. Zuidema; Christopher A. McKay; Ryan J. Gilbert; X. Lucas Lu; Leo Q. Wan

Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell–substrate interactions, and may benefit the optimization of scaffold design for CNS healing.


Proceedings of the National Academy of Sciences of the United States of America | 2016

EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation

Haoruo Jia; Xiaoyuan Ma; Wei Tong; Basak Doyran; Zeyang Sun; Luqiang Wang; Xianrong Zhang; Yilu Zhou; Farid Badar; Abhishek Chandra; X. Lucas Lu; Yang Xia; Lin Han; Motomi Enomoto-Iwamoto; Ling Qin

Significance The uppermost superficial zone of articular cartilage plays multifaceted roles in maintaining cartilage structure, function, and mechanical properties and in preventing cartilage degeneration during osteoarthritis initiation. However, its regulation by growth factors and hormones is still largely unknown. Here we report that EGFR signaling is an important growth factor pathway that maintains superficial chondrocyte number, promotes boundary lubricant secretion and cartilage surface lubrication, and stimulates mechanical strength of articular cartilage. Reduction in EGFR activity leads to structurally, functionally, and mechanically compromised articular cartilage during development and drastically accelerates cartilage degeneration under normal and surgically induced osteoarthritis conditions. Thus, our studies strongly suggest that targeting cartilage surface EGFR signaling should be considered as a novel direction for osteoarthritis treatment. Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis. Immunostaining revealed that its activity is mostly dominant in the superficial layer of healthy cartilage but greatly diminished when OA initiates. To evaluate the role of EGFR signaling in the articular cartilage, we studied a cartilage-specific Egfr-deficient (CKO) mouse model (Col2-Cre EgfrWa5/flox). These mice developed early cartilage degeneration at 6 mo of age. By 2 mo of age, although their gross cartilage morphology appears normal, CKO mice had a drastically reduced number of superficial chondrocytes and decreased lubricant secretion at the surface. Using superficial chondrocyte and cartilage explant cultures, we demonstrated that EGFR signaling is critical for maintaining the number and properties of superficial chondrocytes, promoting chondrogenic proteoglycan 4 (Prg4) expression, and stimulating the lubrication function of the cartilage surface. In addition, EGFR deficiency greatly disorganized collagen fibrils in articular cartilage and strikingly reduced cartilage surface modulus. After surgical induction of OA at 3 mo of age, CKO mice quickly developed the most severe OA phenotype, including a complete loss of cartilage, extremely high surface modulus, subchondral bone plate thickening, and elevated joint pain. Taken together, our studies establish EGFR signaling as an important regulator of the superficial layer during articular cartilage development and OA initiation.


Journal of Biomechanics | 2015

The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture

Yilu Zhou; Miri Park; Enoch Cheung; Liyun Wang; X. Lucas Lu

Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearmans rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.

Collaboration


Dive into the X. cas Lu's collaboration.

Top Co-Authors

Avatar

Liyun Wang

University of Delaware

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yilu Zhou

University of Delaware

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo Q. Wan

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Miri Park

University of Delaware

View shared research outputs
Top Co-Authors

Avatar

Bo Huo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Cheng Dong

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Mauricio Terrones

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge