Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leon Bernal-Mizrachi is active.

Publication


Featured researches published by Leon Bernal-Mizrachi.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetic heterogeneity of diffuse large B-cell lymphoma

Jenny Zhang; Vladimir Grubor; Cassandra Love; Anjishnu Banerjee; Kristy L. Richards; Piotr A. Mieczkowski; Cherie H. Dunphy; William W.L. Choi; Wing Y. Au; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Qingquan Liu; Alice Fan; Katherine Walsh; Dereje D. Jima; Lisa L. Smith; Amy J. Johnson; John C. Byrd; Micah A. Luftig

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.


Nature Genetics | 2012

The genetic landscape of mutations in Burkitt lymphoma

Cassandra Love; Zhen Sun; Dereje D. Jima; Guojie Li; Jenny Zhang; Rodney R. Miles; Kristy L. Richards; Cherie H. Dunphy; William W.L. Choi; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Amy Chadburn; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Adrienne Greenough; Andrea B. Moffitt; Matthew McKinney; Anjishnu Banerjee; Vladimir Grubor; Shawn Levy; David B. Dunson

Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.


Blood | 2010

Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.

Dereje D. Jima; Jenny Zhang; Cassandra L. Jacobs; Kristy L. Richards; Cherie H. Dunphy; William W.L. Choi; Wing Y. Au; Gopesh Srivastava; Magdalena Czader; David A. Rizzieri; Anand S. Lagoo; Patricia L. Lugar; Karen P. Mann; Christopher R. Flowers; Leon Bernal-Mizrachi; Kikkeri N. Naresh; Andrew M. Evens; Leo I. Gordon; Micah A. Luftig; Daphne R. Friedman; J. Brice Weinberg; Michael A. Thompson; Javed Gill; Qingquan Liu; Tam How; Vladimir Grubor; Yuan Gao; Amee Patel; Han Wu; Jun Zhu

A role for microRNA (miRNA) has been recognized in nearly every biologic system examined thus far. A complete delineation of their role must be preceded by the identification of all miRNAs present in any system. We elucidated the complete small RNA transcriptome of normal and malignant B cells through deep sequencing of 31 normal and malignant human B-cell samples that comprise the spectrum of B-cell differentiation and common malignant phenotypes. We identified the expression of 333 known miRNAs, which is more than twice the number previously recognized in any tissue type. We further identified the expression of 286 candidate novel miRNAs in normal and malignant B cells. These miRNAs were validated at a high rate (92%) using quantitative polymerase chain reaction, and we demonstrated their application in the distinction of clinically relevant subgroups of lymphoma. We further demonstrated that a novel miRNA cluster, previously annotated as a hypothetical gene LOC100130622, contains 6 novel miRNAs that regulate the transforming growth factor-β pathway. Thus, our work suggests that more than a third of the miRNAs present in most cellular types are currently unknown and that these miRNAs may regulate important cellular functions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Down-regulation of 14-3-3ζ suppresses anchorage-independent growth of lung cancer cells through anoikis activation

Zenggang Li; Jing Zhao; Yuhong Du; Hae Ryoun Park; Shi-Yong Sun; Leon Bernal-Mizrachi; Alastair Aitken; Fadlo R. Khuri; Haian Fu

The family of 14-3-3 proteins has emerged as critical regulators of diverse cellular responses under both physiological and pathological conditions. Here, we report an important role of 14-3-3ζ in tumorigenesis through a mechanism that involves anoikis resistance. 14-3-3ζ is up-regulated in a number of cancer types, including lung cancer. Through an RNAi approach using human lung adenocarcinoma-derived A549 cells as a model system, we have found that knockdown of a single ζ isoform of 14-3-3 is sufficient to restore the sensitivity of cancer cells to anoikis and impair their anchorage-independent growth. Enhanced anoikis appears to be mediated in part by up-regulated BH3-only proteins, Bad and Bim, coupled with decreased Mcl-1, resulting in the subsequent activation of Bax. This study suggests a model in which anchorage-independent growth of lung cancer cells requires the presence of 14-3-3ζ. This work not only reveals a critical role of 14-3-3ζ in anoikis suppression in lung cancer cells, but also identifies and validates 14-3-3ζ as a potential molecular target for anticancer therapeutic development.


International Journal of Molecular Sciences | 2015

A Time to Kill: Targeting Apoptosis in Cancer

Jean L. Koff; Sampath Ramachandiran; Leon Bernal-Mizrachi

The process of apoptosis is essential for maintaining the physiologic balance between cell death and cell growth. This complex process is executed by two major pathways that participate in activating an executioner mechanism leading to chromatin disintegration and nuclear fragmentation. Dysregulation of these pathways often contributes to cancer development and resistance to cancer therapy. Here, we review the most recent discoveries in apoptosis regulation and possible mechanisms for resensitizing tumor cells to therapy.


Journal of Biological Chemistry | 2012

Vitamin D Suppression of Endoplasmic Reticulum Stress Promotes an Antiatherogenic Monocyte/Macrophage Phenotype in Type 2 Diabetic Patients

Amy E. Riek; Jisu Oh; Jennifer E. Sprague; Alexandra Timpson; Lisa de las Fuentes; Leon Bernal-Mizrachi; Kenneth B. Schechtman; Carlos Bernal-Mizrachi

Background: Interactions between environmental conditions and monocyte phenotype are critical for the development of vascular complications in diabetes. Results: Modulation of ER stress by vitamin D controls monocyte/macrophage phenotype and vascular adhesion. Conclusion: Vitamin D is a natural ER stress reliever that promotes an anti-inflammatory monocyte/macrophage phenotype. Significance: Vitamin D is a potential therapy to reduce vascular complications in diabetics. Cardiovascular disease is the leading cause of morbidity/mortality in patients with type 2 diabetes mellitus (T2DM), but there is a lack of knowledge about the mechanism(s) of increased atherosclerosis in these patients. In patients with T2DM, the prevalence of 25-hydroxy vitamin D (25(OH)D) deficiency is almost twice that for nondiabetics and doubles the relative risk of developing cardiovascular disease compared with diabetic patients with normal 25(OH)D. We tested the hypothesis that monocytes from vitamin D-deficient subjects will have a proatherogenic phenotype compared with vitamin D-sufficient subjects in 43 patients with T2DM. Serum 25(OH)D level inversely correlated with monocyte adhesion to endothelial cells even after adjustment for demographic and comorbidity characteristics. Vitamin D-sufficient patients (≥30 ng/ml 25(OH)D) had lower monocyte endoplasmic reticulum (ER) stress, a predominance of M1 over M2 macrophage membrane receptors, and decreased mRNA expression of monocyte adhesion molecules PSGL-1, β1-integrin, and β2-integrin compared with patients with 25(OH)D levels of <30 ng/ml. In vitamin D-deficient macrophages, activation of ER stress increased adhesion and adhesion molecule expression and induced an M2-predominant phenotype. Moreover, adding 1,25(OH)2D3 to vitamin D-deficient macrophages shifted their phenotype toward an M1-predominant phenotype with suppressed adhesion. Conversely, deletion of the vitamin D receptor in macrophages from diabetic patients activated ER stress, accelerated adhesion, and increased adhesion molecule expression. The absence of ER stress protein CCAAT enhancer-binding protein homologous protein suppressed monocyte adhesion, adhesion molecule expression, and the M2-predominant phenotype induced by vitamin D deficiency. Thus, vitamin D is a natural ER stress reliever that induced an antiatherogenic monocyte/macrophage phenotype.


Cell | 2017

Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma

Anupama Reddy; Jenny Zhang; Nicholas S. Davis; Andrea B. Moffitt; Cassandra Love; Alexander Waldrop; Sirpa Leppä; Annika Pasanen; Leo Meriranta; Marja-Liisa Karjalainen-Lindsberg; Peter Nørgaard; Mette Pedersen; Anne O. Gang; Estrid Høgdall; Tayla Heavican; Waseem Lone; Javeed Iqbal; Qiu Qin; Guojie Li; So Young Kim; Jane Healy; Kristy L. Richards; Yuri Fedoriw; Leon Bernal-Mizrachi; Jean L. Koff; Ashley D. Staton; Christopher R. Flowers; Ora Paltiel; Neta Goldschmidt; Maria Calaminici

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Cancer | 2011

Peripheral blood monitoring of chronic myeloid leukemia during treatment with imatinib, second-line agents, and beyond

Lisa Lima; Leon Bernal-Mizrachi; Debra Saxe; Karen P. Mann; Mourad Tighiouart; Martha Arellano; Leonard T. Heffner; Morgan L. McLemore; Amelia Langston; Elliott F. Winton; Hanna Jean Khoury

The current study was conducted to compare simultaneously obtained bone marrow (BM) cytogenetics (CTG), peripheral blood (PB) and BM fluorescence in situ hybridization (FISH), and quantitative real‐time polymerase chain reaction (Q‐PCR) for BCR‐ABL1 in monitoring response to treatment with tyrosine kinase inhibitors and homoharringtonine (HHT) in patients with chronic myeloid leukemia (CML).


Cancer Discovery | 2017

The genetic basis of hepatosplenic T-cell lymphoma

Matthew McKinney; Andrea B. Moffitt; Philippe Gaulard; Marion Travert; Laurence De Leval; Alina Nicolae Mark Raffeld; Elaine S. Jaffe; Stefania Pittaluga; Liqiang Xi; Tayla Heavican; Javeed Iqbal; Karim Belhadj; Marie Helene Delfau-Larue; Virginie Fataccioli; Magdalena Czader; Izidore S. Lossos; Jennifer Chapman-Fredricks; Kristy L. Richards; Yuri Fedoriw; Sarah L. Ondrejka; Eric D. Hsi; Lawrence Low; Dennis D. Weisenburger; Wing C. Chan; Neha Mehta-Shah; Steven M. Horwitz; Leon Bernal-Mizrachi; Christopher R. Flowers; Anne W. Beaven; Mayur Parihar

Hepatosplenic T-cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole-exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy-number alterations in the disease. Chromatin-modifying genes, including SETD2, INO80, and ARID1B, were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%), for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS, and TP53SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates gene mutations linked to HSTL pathogenesis and potential treatment targets.Significance: We report the first systematic application of whole-exome sequencing to define the genetic basis of HSTL, a rare but lethal disease. Our work defines SETD2 as a tumor suppressor gene in HSTL and implicates genes including INO80 and PIK3CD in the disease. Cancer Discov; 7(4); 369-79. ©2017 AACR.See related commentary by Yoshida and Weinstock, p. 352This article is highlighted in the In This Issue feature, p. 339.


British Journal of Haematology | 2012

Characteristics and outcomes of diffuse large B-cell lymphoma presenting in leukaemic phase

Disni Muringampurath-John; David L. Jaye; Christopher R. Flowers; Debra Saxe; Zhengjia Chen; Mary Jo Lechowicz; Dennis D. Weisenburger; Martin Bast; Martha Arellano; Leon Bernal-Mizrachi; Leonard T. Heffner; Morgan L. McLemore; Jonathan L. Kaufman; Elliott F. Winton; Sagar Lonial; James O. Armitage; Hanna Jean Khoury

Diffuse large B‐cell lymphoma (DLBCL) occasionally presents with circulating malignant cells. The clinical characteristics and long‐term outcomes of these patients have not been described. Twenty‐nine newly diagnosed DLBCL presenting in leukaemic phase were identified between 1996 and 2010, at two institutions. Median age was 48 years, and patients presented with leucocytosis, high lactate dehydrogenase levels, B symptoms, and high International Prognostic Index score. Extra nodal site involvement was observed in all patients and affected the bone marrow (100%), spleen (62%), pleura/lung (41%), liver (21%), bone (17%), bowels (7%) and cerebrospinal fluid (14%). Blood lymphomatous cells co‐expressed CD19, CD20, CD22, CD38, CD45, HLA‐DR and FMC7 in >90%, and kappa or lambda light chain restriction in >50%. Ninety per cent received rituximab and anthracycline‐based chemotherapy. Overall, remission was complete in 54% and partial in 31%; 15% had resistant disease. Median follow‐up was 47 months; 13 (45%) patients remain alive in complete remission. Median progression‐free and overall survivals were 11·5 and 46·7 months, respectively. In summary, patients with DLBCL in leukaemic phase present with high tumour burden and frequent involvement of extra nodal sites. In this uncommon DLBCL subgroup, anthracycline‐based regimens with rituximab are associated with early morbidity and mortality, but yield approximately 50% 4‐year survival.

Collaboration


Dive into the Leon Bernal-Mizrachi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristy L. Richards

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge