Léon J. A. Spijkers
Academic Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Léon J. A. Spijkers.
PLOS ONE | 2011
Léon J. A. Spijkers; Rob F.P. van den Akker; Ben J. A. Janssen; Jacques Debets; Jo G. R. De Mey; Erik S.G. Stroes; Bert-Jan H. van den Born; Dayanjan S. Wijesinghe; Charles E. Chalfant; Luke MacAleese; Gert B. Eijkel; Ron M. A. Heeren; Astrid E. Alewijnse; Stephan L. M. Peters
Background Hypertension is, amongst others, characterized by endothelial dysfunction and vascular remodeling. As sphingolipids have been implicated in both the regulation of vascular contractility and growth, we investigated whether sphingolipid biology is altered in hypertension and whether this is reflected in altered vascular function. Methods and Findings In isolated carotid arteries from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, shifting the ceramide/S1P ratio towards ceramide dominance by administration of a sphingosine kinase inhibitor (dimethylsphingosine) or exogenous application of sphingomyelinase, induced marked endothelium-dependent contractions in SHR vessels (DMS: 1.4±0.4 and SMase: 2.1±0.1 mN/mm; n = 10), that were virtually absent in WKY vessels (DMS: 0.0±0.0 and SMase: 0.6±0.1 mN/mm; n = 9, p<0.05). Imaging mass spectrometry and immunohistochemistry indicated that these contractions were most likely mediated by ceramide and dependent on iPLA2, cyclooxygenase-1 and thromboxane synthase. Expression levels of these enzymes were higher in SHR vessels. In concurrence, infusion of dimethylsphingosine caused a marked rise in blood pressure in anesthetized SHR (42±4%; n = 7), but not in WKY (−12±10%; n = 6). Lipidomics analysis by mass spectrometry, revealed elevated levels of ceramide in arterial tissue of SHR compared to WKY (691±42 vs. 419±27 pmol, n = 3–5 respectively, p<0.05). These pronounced alterations in SHR sphingolipid biology are also reflected in increased plasma ceramide levels (513±19 pmol WKY vs. 645±25 pmol SHR, n = 6–12, p<0.05). Interestingly, we observed similar increases in ceramide levels (correlating with hypertension grade) in plasma from humans with essential hypertension (185±8 pmol vs. 252±23 pmol; n = 18 normotensive vs. n = 19 hypertensive patients, p<0.05). Conclusions Hypertension is associated with marked alterations in vascular sphingolipid biology such as elevated ceramide levels and signaling, that contribute to increased vascular tone.
PLOS ONE | 2014
Fouad Amraoui; Léon J. A. Spijkers; Hajar Hassani Lahsinoui; Liffert Vogt; Joris A. M. van der Post; Stephan L. M. Peters; Gijs B. Afink; Carrie Ris-Stalpers; Bert-Jan H. van den Born
Objective Scavenging of vascular endothelial growth factor (VEGF) elevates blood pressure (BP) in patients receiving anti-angiogenic therapy. Similarly, inhibition of circulation VEGF by its soluble receptor fms-like tyrosine kinase-1 (sFlt-1) underlies BP elevation in pre-eclampsia. Both phenotypes are characterized by augmented production of endothelin-1 (ET-1), suggesting a role for ET-1 in anti-angiogenic hypertension. We aimed to assess the effect of VEGF inhibition on ET-1-induced contractility and downstream ET-1 signaling. Approach and Results Male C57BL/6N mice were treated with either sFlt-1 or vehicle and BP was assessed via tail-cuff. Mean arterial pressure of sFlt-1-treated mice markedly increased compared to vehicle-treated controls (N = 11–12, p<0.05). After sacrifice, carotid and mesenteric arteries were isolated for isometric tension measurements. ET-1-induced contractions were similar in mesenteric arteries of vehicle and sFlt-1-treated mice, but augmented in carotid segments of sFlt-1-treated mice compared to controls (N = 9–10, p<0.05). The increased contraction in carotid segments could be completely abrogated by the cyclooxygenase (COX) inhibitor indomethacin (N = 9–10, p<0.05), indicating heightened prostaglandin-mediated vasoconstriction. This was associated with a shift towards procontractile ETB signaling in sFlt-1-treated mice, possibly explaining the increased ET-1-induced prostaglandin-mediated vasoconstriction. In line with the ex vivo findings, sFlt-1-induced BP elevation could be prevented in vivo by oral treatment with either a high-dose of the COX inhibitor aspirin (N = 7) or with picotamide (N = 9), a dual thromboxane A2 synthase inhibitor and receptor antagonist. Conclusions VEGF inhibition augments the pressor response to ET-1. The cyclooxygenase-thromboxane signaling route downstream of ET-1 might be a possible target to prevent BP elevation during VEGF inhibition.
PLOS ONE | 2011
Léon J. A. Spijkers; Ben J. A. Janssen; Jelly Nelissen; Merlijn J. Meens; Dayanjan S. Wijesinghe; Charles E. Chalfant; Jo G. R. De Mey; Astrid E. Alewijnse; Stephan L. M. Peters
Background We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A2, cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A2. This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. Methods and Findings For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20–25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A2. The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. Conclusion In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions.
Journal of the American Heart Association | 2016
Petra Keul; Marcel M. G. J. van Borren; Alexander Ghanem; Frank U. Müller; Antonius Baartscheer; Arie O. Verkerk; Frank Stümpel; Jan S. Schulte; Nazha Hamdani; Wolfgang A. Linke; Pieter B. van Loenen; Marek Matus; Wilhelm Schmitz; Jörg Stypmann; Klaus Tiemann; J. H. Ravesloot; Astrid E. Alewijnse; Sven Hermann; Léon J. A. Spijkers; Karl-Heinz Hiller; Deron R. Herr; Gerd Heusch; Michael Schäfers; Stephan L. M. Peters; Jerold Chun; Bodo Levkau
Background Sphingosine‐1‐phosphate plays vital roles in cardiomyocyte physiology, myocardial ischemia–reperfusion injury, and ischemic preconditioning. The function of the cardiomyocyte sphingosine‐1‐phosphate receptor 1 (S1P1) in vivo is unknown. Methods and Results Cardiomyocyte‐restricted deletion of S1P1 in mice (S1P1 α MHCC re) resulted in progressive cardiomyopathy, compromised response to dobutamine, and premature death. Isolated cardiomyocytes from S1P1 α MHCC re mice revealed reduced diastolic and systolic Ca2+ concentrations that were secondary to reduced intracellular Na+ and caused by suppressed activity of the sarcolemmal Na+/H+ exchanger NHE‐1 in the absence of S1P1. This scenario was successfully reproduced in wild‐type cardiomyocytes by pharmacological inhibition of S1P1 or sphingosine kinases. Furthermore, Sarcomere shortening of S1P1 α MHCC re cardiomyocytes was intact, but sarcomere relaxation was attenuated and Ca2+ sensitivity increased, respectively. This went along with reduced phosphorylation of regulatory myofilament proteins such as myosin light chain 2, myosin‐binding protein C, and troponin I. In addition, S1P1 mediated the inhibitory effect of exogenous sphingosine‐1‐phosphate on β‐adrenergic–induced cardiomyocyte contractility by inhibiting the adenylate cyclase. Furthermore, ischemic precondtioning was abolished in S1P1 α MHCC re mice and was accompanied by defective Akt activation during preconditioning. Conclusions Tonic S1P1 signaling by endogenous sphingosine‐1‐phosphate contributes to intracellular Ca2+ homeostasis by maintaining basal NHE‐1 activity and controls simultaneously myofibril Ca2+ sensitivity through its inhibitory effect on adenylate cyclase. Cardioprotection by ischemic precondtioning depends on intact S1P1 signaling. These key findings on S1P1 functions in cardiac physiology may offer novel therapeutic approaches to cardiac diseases.
PLOS ONE | 2014
Kathinka W. E. M. van Hooren; Léon J. A. Spijkers; Dorothee van Breevoort; Mar Fernandez-Borja; Ruben Bierings; Jaap D. van Buul; Astrid E. Alewijnse; Stephan L. M. Peters; Jan Voorberg
Sphingosine-1-phosphate (S1P) is an agonist for five distinct G-protein coupled receptors, that is released by platelets, mast cells, erythrocytes and endothelial cells. S1P promotes endothelial cell barrier function and induces release of endothelial cell-specific storage-organelles designated Weibel-Palade bodies (WPBs). S1P-mediated enhancement of endothelial cell barrier function is dependent on S1P receptor 1 (S1PR1) mediated signaling events that result in the activation of the small GTPase Rac1. Recently, we have reported that Rac1 regulates epinephrine-induced WPB exocytosis following its activation by phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 1 (PREX1). S1P has also been described to induce WPB exocytosis. Here, we confirm that S1P induces release of WPBs using von Willebrand factor (VWF) as a marker. Using siRNA mediated knockdown of gene expression we show that S1PR1 is not involved in S1P-mediated release of WPBs. In contrast depletion of the S1PR3 greatly reduced S1P-induced release of VWF. S1P-mediated enhancement of endothelial barrier function was not affected by S1PR3-depletion whereas it was greatly impaired in cells lacking S1PR1. The Rho kinase inhibitor Y27632 completely abrogated S1P-mediated release of VWF. Also, the calcium chelator BAPTA-AM significantly reduced S1P-induced release of VWF. Our findings indicate that S1P-induced release of haemostatic, inflammatory and angiogenic components stored within WPBs depends on the S1PR3.
British Journal of Pharmacology | 2012
Léon J. A. Spijkers; Astrid E. Alewijnse; Stephan L. M. Peters
BACKGROUND AND PURPOSE FTY720 (Fingolimod) is a recently approved orally administered drug for the treatment of multiple sclerosis. Phase II and III clinical trials have demonstrated that this drug modestly increases BP. We previously showed that inhibition of sphingosine kinase increases vascular tone and BP in hypertensive, but not normotensive rats. Since FTY720 is reported to have inhibitory effects on sphingosine kinase, we investigated whether FTY720 increases vascular tone and BP only in hypertensive rats via this mechanism.
PLOS ONE | 2014
Erik N. T. P. Bakker; Gergely Groma; Léon J. A. Spijkers; Judith de Vos; Angela van Weert; Henk van Veen; Vincent Everts; Silvia M. Arribas; Ed VanBavel
Objectives Spontaneously hypertensive rats (SHR) have been used frequently as a model for human essential hypertension. However, both the SHR and its normotensive control, the Wistar Kyoto rat (WKY), consist of genetically different sublines. We tested the hypothesis that the pathophysiology of vascular remodeling in hypertension differs among rat sublines. Methods and Results We studied mesenteric resistance arteries of WKY and SHR from three different sources, at 6 weeks and 5 months of age. Sublines of WKY and SHR showed differences in blood pressure, body weight, vascular remodeling, endothelial function, and vessel ultrastructure. Common features in small mesenteric arteries from SHR were an increase in wall thickness, wall-to-lumen ratio, and internal elastic lamina thickness. Conclusions Endothelial dysfunction, vascular stiffening, and inward remodeling of small mesenteric arteries are not common features of hypertension, but are subline-dependent. Differences in genetic background associate with different types of vascular remodeling in hypertensive rats.
Molecules and Cells | 2010
Léon J. A. Spijkers; Astrid E. Alewijnse; Stephan L. M. Peters
Vasomotor tone is regulated by a complex interplay of a variety of extrinsic neurohumoral and intrinsic factors. It is the endothelium that has a major influence on smooth muscle cell tone via the release of intrinsic vasoactive factors and is therefore an important regulator of vasomotor tone. Sphingolipids are an emerging class of lipid mediators with important physiological properties. In the last two decades it has not only become increasingly clear that sphingolipid signaling plays a pivotal role in immune function, but also its role in the vascular system is now becoming more recognized. In this mini-review we will highlight the possible cross-talk between sphingolipids and intrinsic vasoactive factors released by the endothelium. Via this cross-talk sphingolipids can orchestrate vasomotor tone and may therefore also be involved in the pathophysiology of disease states associated with endothelial dysfunction.
Journal of Hypertension | 2014
Lieke W.J. van den Elsen; Léon J. A. Spijkers; Rob F.P. van den Akker; Aggie M.H. van Winssen; Martin Balvers; Dayanjan S. Wijesinghe; Charles E. Chalfant; Johan Garssen; Linette E. M. Willemsen; Astrid E. Alewijnse; Stephan L. M. Peters
Objective: Long-chain n-3 polyunsaturated fatty acids from oily fish reduce blood pressure (BP) in hypertension. Previously, we demonstrated that hypertension is associated with marked alterations in sphingolipid biology and elevated ceramide-induced vasoconstriction. Here we investigated in spontaneously hypertensive rats (SHRs) whether fish oil improves endothelial function including reduced vascular contraction induced via the sphingolipid cascade, resulting in reduced BP. Methods: Twelve-week-old SHRs were fed a control or fish oil-enriched diet during 12 weeks, and BP was recorded. Plasma sphingolipid levels were quantified by mass spectrometry and the response of isolated carotid arteries towards different stimuli was measured. Furthermore, erythrocyte membrane fatty acid composition, thromboxane A2 formation and cytokine secretion in ex-vivo lipopolysaccharide-stimulated thoracic aorta segments were determined. Results: The fish oil diet reduced the mean arterial BP (P < 0.001) and improved endothelial function, as indicated by a substantially increased relaxation potential towards ex-vivo methacholine exposure of the carotid arteries (P < 0.001). The long-chain n-3 polyunsaturated fatty acid diet resulted in altered levels of specific (glucosyl)ceramide subspecies (P < 0.05), reduced membrane arachidonic acid content (P < 0.001) and decreased thromboxane concentrations in plasma (P < 0.01). Concomitantly, the fish oil diet largely reduced ceramide-induced contractions (P < 0.01), which are predominantly mediated by thromboxane. Furthermore, thromboxane A2 and interleukin-10 were reduced in supernatants of lipopolysaccharide-stimulated thoracic aorta of SHRs fed the fish oil diet while RANTES (regulated on activation, normal T-cell expressed and secreted) was enhanced. This may contribute to reduced vasoconstriction in vivo. Conclusions: Dietary fish oil lowers BP in SHRs and improves endothelial function in association with suppression of sphingolipid-dependent vascular contraction.
Hypertension Research | 2017
Pieter Lemkens; Léon J. A. Spijkers; Merlijn J. Meens; Jelly Nelissen; Ben J. A. Janssen; Stephan L. M. Peters; Paul Schiffers; Jo G. R. De Mey
Endothelin 1 (ET-1), a potent vasoconstrictor, pro-mitogenic and pro-inflammatory peptide, may promote development of endothelial dysfunction and arterial remodeling. ET-1 can be formed through cleavage of big-ET-1 by endothelin-converting enzyme (ECE) or neutral endopeptidase (NEP). We investigated whether chronic treatment with the novel dual NEP/ECE inhibitor SOL1 improves functional and structural properties of resistance-sized arteries of 32-week-old male spontaneously hypertensive rats (SHR). SHR received a chronic 4-week treatment with SOL1, losartan or hydralazine. We then compared effects of inhibition of NO synthase (NOS) (100 μM l-NAME), blockade of ETA- and ETB-receptors (10 μM bosentan) and stimulation of the endothelium with 0.001–10 μM acetylcholine (ACh) in isolated third-order mesenteric resistance arteries. Losartan and hydralazine significantly lowered blood pressure. Losartan decreased the media-to-lumen ratio of resistance arteries. l-NAME (1) increased arterial contractile responses to K+ (5.9–40 mM) in the losartan, SOL1 and vehicle group and (2) increased the sensitivity to phenylephrine (PHE; 0.16–20 μM) in the SOL1 group but not in the losartan, hydralazine and vehicle group. Relaxing responses to ACh in the absence or presence of l-NAME during contractions induced by either 10 μM PHE or 40 mM K+ were not altered by any in vivo treatment. Acute treatment with bosentan did, however, significantly improve maximal relaxing responses involving endothelium-derived nitric oxide and -hyperpolarizing factors in the SOL1 group but not in the losartan, hydralazine or vehicle group. Thus, chronic inhibition of NEP/ECE improved basal endothelial function but did not alter blood pressure, resistance artery structure and stimulated endothelium-dependent relaxing responses in 32-week-old SHR.