Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan L. M. Peters is active.

Publication


Featured researches published by Stephan L. M. Peters.


Naunyn-schmiedebergs Archives of Pharmacology | 2008

Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors

Elfaridah P. Frazier; Stephan L. M. Peters; Alan S. Braverman; Michael R. Ruggieri; Martin C. Michel

The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by β-adrenoceptors, in most species involving a strong β3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of β-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to β-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in β-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and β-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder.


Glia | 2010

Sphingosine 1‐phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions

Ruben van Doorn; Jack van Horssen; Dennis Verzijl; Maarten E. Witte; Eric Ronken; Bert van het Hof; Kim Lakeman; Christine D. Dijkstra; Paul van der Valk; Arie Reijerkerk; Astrid E. Alewijnse; Stephan L. M. Peters; Helga E. de Vries

Sphingolipids are a class of biologically active lipids that have a role in multiple biological processes including inflammation. Sphingolipids exert their functions by direct signaling or through signaling by their specific receptors. Phosphorylated FTY720 (FTY720P) is a sphingosine 1‐phosphate (S1P) analogue that is currently in trial for treatment of multiple sclerosis (MS), which targets all S1P receptors but S1P2. To date, however, it remains unknown whether FTY720P may exert direct anti‐inflammatory effects within the central nervous system (CNS), because data concerning S1P receptor expression and regulation under pathological conditions in the human brain are lacking. To investigate potential regulation of S1P receptors in the human brain during MS, we performed immunohistochemical analysis of S1P receptor 1 and 3 expression in well‐characterized MS lesions. A strong increase in S1P receptor 1 and 3 expression on reactive astrocytes was detected in active and chronic inactive MS lesions. In addition, we treated primary cultures of human astrocytes with the proinflammatory cytokine tumor necrosis factor‐alpha to identify the regulation of S1P1/3 on astrocytes under pathological conditions. Importantly, we demonstrate that FTY720P exerts an anti‐inflammatory action on human astrocytes by limiting secretion of proinflammatory cytokines. Our data demonstrate that reactive astrocytes in MS lesions and cultured under proinflammatory conditions strongly enhance expression of S1P receptors 1 and 3. Results from this study indicate that astrocytes may act as a yet‐unknown target within the CNS for the anti‐inflammatory effects observed after FTY720P administration in the treatment of MS.


European Journal of Pharmacology | 2008

Sphingolipid signalling in the cardiovascular system: good, bad or both?

Astrid E. Alewijnse; Stephan L. M. Peters

Sphingolipids are biologically active lipids that play important roles in various cellular processes and the sphingomyelin metabolites ceramide, sphingosine and sphingosine-1-phosphate can act as signalling molecules in most cell types. With the recent development of the immunosuppressant drug FTY720 (Fingolimod) which after phosphorylation in vivo acts as a sphingosine-1-phosphate receptor agonist, research on the role of sphingolipids in the immune and other organ systems was triggered enormously. Since it was reported that FTY720 induced a modest, but significant transient decrease in heart rate in animals and humans, the question was raised which pharmacological properties of drugs targeting sphingolipid signalling will affect cardiovascular function in vivo. The answer to this question will most likely also indicate what type of drug could be used to treat cardiovascular disease. The latter is becoming increasingly important because of the increasing population carrying characteristics of the metabolic syndrome. This syndrome is, amongst others, characterized by obesity, hypertension, atherosclerosis and diabetes. As such, individuals with this syndrome are at increased risk of heart disease. Now numerous studies have investigated sphingolipid effects in the cardiovascular system, can we speculate whether certain sphingolipids under specific conditions are good, bad or maybe both? In this review we will give a brief overview of the pathophysiological role of sphingolipids in cardiovascular disease. In addition, we will try to answer how drugs that target sphingolipid signalling will potentially influence cardiovascular function and whether these drugs would be useful to treat cardiovascular disease.


Journal of Cardiovascular Pharmacology | 2003

Involvement of the β3 adrenoceptor in nebivolol-induced vasorelaxation in the rat aorta

Annemieke A. De Groot; Marie-Jeanne Mathy; Pieter A. van Zwieten; Stephan L. M. Peters

Nebivolol is a highly selective &bgr;1 adrenoceptor blocker with additional vasodilating properties. Although it has been shown that the nebivolol-induced vasorelaxation is nitric oxide (NO) and cGMP dependent, the receptor that mediates these actions remains controversial, and serotonergic as well as &bgr;-adrenergic pathways may be involved. Therefore, functional experiments investigating the receptor involved in nebivolol-induced vasorelaxation were performed in the rat aorta. Isolated aortic rings were exposed to cumulative concentrations of nebivolol. Nebivolol concentrations of 3 &mgr;mol/L and higher caused vasorelaxation, which was inhibited by the presence of the NO synthase inhibitor l-NNA (100 &mgr;mol/L), or by mechanical removal of the endothelium. Exposure of the vessel rings to the selective 5-HT1A antagonist NAN-190 (1 &mgr;mol/L) or the 5-HT1/2 antagonist methysergide (1 &mgr;mol/L) did not influence nebivolol-induced vasorelaxation. Similarly, the incubation with the &bgr;2-adrenoceptor antagonist butoxamine (50 &mgr;mol/L) did not prevent vasorelaxation. The selective &bgr;3-adrenoceptor antagonist S-(−)-cyanopindolol (1 &mgr;mol/L), however, significantly counteracted the nebivolol-induced vasorelaxation. Furthermore, exposure of the aortic rings to cumulative concentrations of the &bgr;3 selective adrenoceptor agonist BRL37344 caused, like nebivolol, NO-dependent vasorelaxation that was antagonized by S-(−)-cyanopindolol. The results suggest that nebivolol-induced NO-dependent vasorelaxation is, at least in part, caused by a &bgr;3-adrenoceptor agonistic effect.


European Journal of Pharmacology | 2008

Regulation of G protein-coupled receptor signalling : Focus on the cardiovascular system and regulator of G protein signalling proteins

Mariëlle C. Hendriks-Balk; Stephan L. M. Peters; Martin C. Michel; Astrid E. Alewijnse

G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization processes and GPCR up- and downregulation. GPCR function can also be regulated by several proteins that directly interact with the receptor and thereby modulate receptor activity. An additional mechanism by which receptor signalling is regulated involves an emerging class of proteins, the so-called regulators of G protein signalling (RGS). In this review we will describe some of these control mechanisms in more detail with some specific examples in the cardiovascular system. In addition, we will provide an overview on RGS proteins and the involvement of RGS proteins in cardiovascular function.


PLOS ONE | 2011

Hypertension Is Associated with Marked Alterations in Sphingolipid Biology: A Potential Role for Ceramide

Léon J. A. Spijkers; Rob F.P. van den Akker; Ben J. A. Janssen; Jacques Debets; Jo G. R. De Mey; Erik S.G. Stroes; Bert-Jan H. van den Born; Dayanjan S. Wijesinghe; Charles E. Chalfant; Luke MacAleese; Gert B. Eijkel; Ron M. A. Heeren; Astrid E. Alewijnse; Stephan L. M. Peters

Background Hypertension is, amongst others, characterized by endothelial dysfunction and vascular remodeling. As sphingolipids have been implicated in both the regulation of vascular contractility and growth, we investigated whether sphingolipid biology is altered in hypertension and whether this is reflected in altered vascular function. Methods and Findings In isolated carotid arteries from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, shifting the ceramide/S1P ratio towards ceramide dominance by administration of a sphingosine kinase inhibitor (dimethylsphingosine) or exogenous application of sphingomyelinase, induced marked endothelium-dependent contractions in SHR vessels (DMS: 1.4±0.4 and SMase: 2.1±0.1 mN/mm; n = 10), that were virtually absent in WKY vessels (DMS: 0.0±0.0 and SMase: 0.6±0.1 mN/mm; n = 9, p<0.05). Imaging mass spectrometry and immunohistochemistry indicated that these contractions were most likely mediated by ceramide and dependent on iPLA2, cyclooxygenase-1 and thromboxane synthase. Expression levels of these enzymes were higher in SHR vessels. In concurrence, infusion of dimethylsphingosine caused a marked rise in blood pressure in anesthetized SHR (42±4%; n = 7), but not in WKY (−12±10%; n = 6). Lipidomics analysis by mass spectrometry, revealed elevated levels of ceramide in arterial tissue of SHR compared to WKY (691±42 vs. 419±27 pmol, n = 3–5 respectively, p<0.05). These pronounced alterations in SHR sphingolipid biology are also reflected in increased plasma ceramide levels (513±19 pmol WKY vs. 645±25 pmol SHR, n = 6–12, p<0.05). Interestingly, we observed similar increases in ceramide levels (correlating with hypertension grade) in plasma from humans with essential hypertension (185±8 pmol vs. 252±23 pmol; n = 18 normotensive vs. n = 19 hypertensive patients, p<0.05). Conclusions Hypertension is associated with marked alterations in vascular sphingolipid biology such as elevated ceramide levels and signaling, that contribute to increased vascular tone.


Journal of Cardiovascular Pharmacology | 2004

Antioxidant activity of nebivolol in the rat aorta.

Annemieke A. De Groot; Marie-Jeanne Mathy; Pieter A. van Zwieten; Stephan L. M. Peters

The &bgr;-blocker nebivolol is a racemic mixture of d- and l- enantiomers that displays negative inotropic as well as direct vasorelaxant activity. In addition, it has been proposed that nebivolol exerts endothelium-protective effects caused by its antioxidant properties. In the present study we investigated the effect of d-, l-, and d/l-nebivolol on reactive oxygen species (ROS)-induced endothelial damage and compared it with carvedilol and metoprolol. Isolated rat aortic rings were exposed to ROS by electrolysis of the organ bath medium. Before and after electrolysis, endothelial function was measured by preconstricting the vessels with phenylephrine followed by the addition of methacholine. Carvedilol and nebivolol protected against ROS-induced endothelial damage, whereas metoprolol did not. The protective effect of nebivolol proved not to be stereoselective. Furthermore, we attempted to determine whether nebivolol acts a scavenger itself or whether another mechanism is involved. By means of HPLC measurements it was shown that nebivolol concentrations were decreased after exposure to electrolysis-induced ROS, thus indicating that nebivolol is degraded by its reaction with ROS. Functional experiments, in the rat aorta, demonstrated that exposure of nebivolol to ROS also affects its vasodilator activity. In conclusion, the present study demonstrates that nebivolol alleviates ROS-induced impairment of endothelium-dependent vasorelaxation. This protective effect is very likely the result of a direct ROS-scavenging action by the nebivolol molecule itself.


Journal of Pharmacology and Experimental Therapeutics | 2004

Does Cyclic AMP Mediate Rat Urinary Bladder Relaxation by Isoproterenol

Elfaridah P. Frazier; Marie-Jeanne Mathy; Stephan L. M. Peters; Martin C. Michel

Cyclic AMP is the prototypical second messenger of β-adrenergic receptors, but recent findings have questioned its role in mediating smooth muscle relaxation upon β-adrenergic receptor stimulation. We have investigated the signaling mechanisms underlying β-adrenergic receptor-mediated relaxation of rat urinary bladder. Concentration-response curves for isoproterenol-induced bladder relaxation were generated in the presence or absence of inhibitors, with concomitant experiments using passive tension and KCl-induced precontraction. The adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536; 1 μM), the protein kinase A inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7; 10 μM), N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89; 1 μM), and Rp-adenosine 3′,5′-cyclic monophosphorothioate (Rp-cAMPS; 30 μM), and the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 3 μM) produced only minor if any inhibition of relaxation against passive tension or KCl-induced precontraction. Among various potassium channel inhibitors, BaCl2 (10 μM), tetraethylammonium (3 μM), apamin (300 nM), and glibenclamide (10 μM) did not inhibit isoproterenol-induced relaxation. Some inhibition of the isoproterenol effects against KCl-induced tone but not against passive tension was seen with inhibitors of calcium-dependent potassium channels such as charybdotoxin and iberiotoxin (30 nM each). A combination of SQ 22,536 and ODQ significantly inhibited relaxation against passive tension by about half, but not that against KCl-induced tone. Moreover, the combination failed to enhance inhibition by charybdotoxin against KCl-induced tone. We conclude that cAMP and cGMP each play a minor role in β-adrenergic receptor-mediated relaxation against passive tension, and calcium-dependent potassium channels play a minor role against active tension.


Journal of Lipid Research | 2007

Effects of CRP infusion on endothelial function and coagulation in normocholesterolemic and hypercholesterolemic subjects

Radjesh J. Bisoendial; John J. P. Kastelein; Stephan L. M. Peters; Johannes H.M. Levels; Rakesh S. Birjmohun; Joris I. Rotmans; Daniel Hartman; Joost C. M. Meijers; Marcel Levi; Erik S.G. Stroes

C-reactive protein (CRP) has been suggested to exert direct adverse effects on the vasculature in experimental setups, including endothelial dysfunction and proinflammatory changes. Here, we assessed the consequences of 1.25 mg/kg highly purified recombinant human CRP, administered as an intravenous bolus, in six patients with familial hypercholesterolemia (FH) and six normocholesterolemic subjects. Endothelium-dependent and -independent vasoreactivity to serotonin and nitroprusside, respectively, were assessed using venous occlusion plethysmography before and after CRP infusion. For biochemical analyses, blood was drawn at different time points. At baseline, FH patients showed blunted endothelium-dependent vasodilation (maximum, 89.2 ± 30.0% vs. 117.7 ± 13.1% in normolipidemic subjects; P = 0.037). Procoagulant activity was also higher in FH patients, illustrated by increased prothrombin fragment 1+2 (F1+2) levels (P = 0.030) and plasminogen activator inhibitor type-1 (PAI-1) activity (P = 0.016). Upon CRP challenge, endothelium-dependent vasodilator capacity further deteriorated in FH patients (P = 0.029), whereas no change in vascular reactivity was observed in normolipidemic subjects. Additionally, coagulation activation was augmented in FH patients compared with normolipidemic subjects (P = 0.009 for F1+2 levels; P = 0.018 and P = 0.003 for PAI-1 antigen and activity, respectively). No difference in inflammatory responses was observed between groups. In hypercholesterolemic patients, CRP aggravates endothelial dysfunction and also evokes augmented procoagulant responses. These findings suggest that particularly in hypercholesterolemia, CRP-lowering strategies should be considered in addition to LDL reduction.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Sphingosine Kinase–Dependent Activation of Endothelial Nitric Oxide Synthase by Angiotensin II

Arthur C.M. Mulders; Mariëlle C. Hendriks-Balk; Marie-Jeanne Mathy; Martin C. Michel; Astrid E. Alewijnse; Stephan L. M. Peters

Objective—In addition to their role in programmed cell death, cell survival, and cell growth, sphingolipid metabolites such as ceramide, sphingosine, and sphingosine-1-phosphate have vasoactive properties. Besides their occurrence in blood, they can also be formed locally in the vascular wall itself in response to external stimuli. This study was performed to investigate whether vasoactive compounds modulate sphingolipid metabolism in the vascular wall and how this might contribute to the vascular responses. Methods and Results—In isolated rat carotid arteries, the contractile responses to angiotensin II are enhanced by the sphingosine kinase inhibitor dimethylsphingosine. Endothelium removal or NO synthase inhibition by N&ohgr;-nitro-l-arginine results in a similar enhancement. Angiotensin II concentration-dependently induces NO production in an endothelial cell line, which can be diminished by dimethylsphingosine. Using immunoblotting and intracellular calcium measurements, we demonstrate that this sphingosine kinase–dependent endothelial NO synthase activation is mediated via both phosphatidylinositol 3-kinase/Akt and calcium-dependent pathways. Conclusions—Angiotensin II induces a sphingosine kinase–dependent activation of endothelial NO synthase, which partially counteracts the contractile responses in isolated artery preparations. This pathway may be of importance under pathological circumstances with reduced NO bioavailability. Moreover, a disturbed sphingolipid metabolism in the vascular wall may lead to reduced NO bioavailability and endothelial dysfunction.

Collaboration


Dive into the Stephan L. M. Peters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten Sand

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Najat Hajji

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge