Leon N. Davies
Aston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leon N. Davies.
British Journal of Ophthalmology | 2009
Phillip J. Buckhurst; James S. Wolffsohn; Sunil Shah; Shehzad A. Naroo; Leon N. Davies; Emma J. Berrow
Background: A new commercially available optical low coherence reflectometry device (Lenstar, Haag-Streit or Allegro Biograph, Wavelight) provides high-resolution non-contact measurements of ocular biometry. The study evaluates the validity and repeatability of these measurements compared with current clinical instrumentation. Method: Measurements were taken with the LenStar and IOLMaster on 112 patients aged 41–96 years listed for cataract surgery. A subgroup of 21 patients also had A-scan applanation ultrasonography (OcuScan) performed. Intersession repeatability of the LenStar measurements was assessed on 32 patients Results: LenStar measurements of white-to-white were similar to the IOLMaster (average difference 0.06 (SD 0.03) D; p = 0.305); corneal curvature measurements were similar to the IOLMaster (average difference −0.04 (0.20) D; p = 0.240); anterior chamber depth measurements were significantly longer than the IOLMaster (by 0.10 (0.40) mm) and ultrasound (by 0.32 (0.62) mm; p<0.001); crystalline lens thickness measurements were similar to ultrasound (difference 0.16 (0.83) mm, p = 0.382); axial length measurements were significantly longer than the IOLMaster (by 0.01 (0.02) mm) but shorter than ultrasound (by 0.14 (0.15) mm; p<0.001). The LensStar was unable to take measurements due to dense media opacities in a similar number of patients to the IOLMaster (9–10%). The LenStar biometric measurements were found to be highly repeatable (variability ⩽2% of average value). Conclusions: Although there were some statistical differences between ocular biometry measurements between the LenStar and current clinical instruments, they were not clinically significant. LenStar measurements were highly repeatable and the instrument easy to use.
Optometry and Vision Science | 2003
Leon N. Davies; E.A.H. Mallen; James S. Wolffsohn; Bernard Gilmartin
Purpose. A clinical evaluation of the Shin-Nippon NVision-K 5001 (also branded as the Grand Seiko WR-5100K) autorefractor (Japan) was performed to examine validity and repeatability compared with subjective refraction and Javal-Schiotz keratometry. Methods. Measurements of refractive error were performed on 198 eyes of 99 subjects (aged 23.2 ± 7.4 years) subjectively (noncycloplegic) by one masked optometrist and objectively with the NVision-K autorefractor by a second optometrist. Keratometry measurements using the NVision-K were compared with the Javal-Schiotz keratometer. Intrasession repeatability of the NVision-K was also assessed on all 99 subjects together with intersession repeatability on a separate occasion separated by 7 to 14 days. Results. Refractive error as measured by the NVision-K was found to be similar (p = 0.67) to subjective refraction (difference, 0.14 ± 0.35 D). It was both accurate and repeatable over a wide prescription range (−8.25 to +7.25 D). Keratometry as measured by the NVision-K was found to be similar (p > 0.50) to the Javal-Schiotz technique in both the horizontal and vertical meridians (horizontal: difference, 0.02 ± 0.09 mm; vertical: difference, 0.01 ± 0.14 mm). There was minimal bias, and the results were repeatable (horizontal: intersession difference, 0.00 ± 0.09 mm; vertical: intersession difference, −0.01 ± 0.12 mm). Conclusion. The open-view arrangement of the Shin-Nippon NVision-K 5001 facilitates the measurement of static refractive error and the accommodative response to real-world stimuli. Coupled with its accuracy, repeatability, and capability to measure corneal curvature, it is a valuable addition to objective instrumentation currently available to the optometrist and researcher.
Ophthalmic and Physiological Optics | 2010
Amy L. Sheppard; Leon N. Davies
Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM‐5500 (Japan) was performed to evaluate validity and repeatability compared with non‐cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted.
Clinical and Experimental Optometry | 2010
Amy L. Sheppard; Abar Bashir; James S. Wolffsohn; Leon N. Davies
The correction of presbyopia and restoration of true accommodative function to the ageing eye is the focus of much ongoing research and clinical work. A range of accommodating intraocular lenses (AIOLs) implanted during cataract surgery has been developed and they are designed to change either their position or shape in response to ciliary muscle contraction to generate an increase in dioptric power. Two main design concepts exist. First, axial shift concepts rely on anterior axial movement of one or two optics creating accommodative ability. Second, curvature change designs are designed to provide significant amplitudes of accommodation with little physical displacement. Single‐optic devices have been used most widely, although the true accommodative ability provided by forward shift of the optic appears limited and recent findings indicate that alternative factors such as flexing of the optic to alter ocular aberrations may be responsible for the enhanced near vision reported in published studies. Techniques for analysing the performance of AIOLs have not been standardised and clinical studies have reported findings using a wide range of both subjective and objective methods, making it difficult to gauge the success of these implants. There is a need for longitudinal studies using objective methods to assess long‐term performance of AIOLs and to determine if true accommodation is restored by the designs available. While dual‐optic and curvature change IOLs are designed to provide greater amplitudes of accommodation than is possible with single‐optic devices, several of these implants are in the early stages of development and require significant further work before human use is possible. A number of challenges remain and must be addressed before the ultimate goal of restoring youthful levels of accommodation to the presbyopic eye can be achieved.
Investigative Ophthalmology & Visual Science | 2011
Amy L. Sheppard; C. John Evans; Krish Devi Singh; James S. Wolffsohn; Mark Dunne; Leon N. Davies
PURPOSE To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model. METHODS Nineteen volunteers, aged 19 to 30 years, were recruited. T(2)-weighted MRIs, optimized to show fluid-filled chambers of the eye, were acquired using an eight-channel radio frequency head coil. Twenty-four oblique-axial slices of 0.8 mm thickness, with no interslice gaps, were acquired to visualize the crystalline lens. Three Maltese cross-type accommodative stimuli (at 0.17, 4.0, and 8.0 D) were presented randomly to the subjects in the MRI to examine lenticular changes with accommodation. MRIs were analyzed to generate a three-dimensional surface model. RESULTS During accommodation, mean crystalline lens thickness increased (F = 33.39, P < 0.001), whereas lens equatorial diameter (F = 24.00, P < 0.001) and surface radii both decreased (anterior surface, F = 21.78, P < 0.001; posterior surface, F = 13.81, P < 0.001). Over the same stimulus range, mean crystalline lens surface area decreased (F = 7.04, P < 0.005) with a corresponding increase in lens volume (F = 6.06, P = 0.005). These biometric changes represent a 1.82% decrease and 2.30% increase in crystalline lens surface area and volume, respectively. CONCLUSIONS; The results indicate that the capsular bag undergoes elastic deformation during accommodation, causing reduced surface area, and the observed volumetric changes oppose the theory that the lens is incompressible.
Current Opinion in Ophthalmology | 2007
James S. Wolffsohn; Leon N. Davies
Purpose of review Imaging of the crystalline lens and intraocular lens is becoming increasingly more important to optimize the refractive outcome of cataract surgery, to detect and manage complications and to ascertain advanced intraocular lens performance. This review examines recent advances in anterior segment imaging. Recent findings The main techniques used for imaging the anterior segment are slit-lamp biomicroscopy, ultrasound biomicroscopy, scheimpflug imaging, phakometry, optical coherence tomography and magnetic resonance imaging. They have principally been applied to the assessment of intraocular lens centration, tilt, position relative to the iris and movement with ciliary body contraction. Summary Despite the advances in anterior chamber imaging technology, there is still the need for a clinical, high-resolution, true anatomical, noninvasive technique to image behind the peripheral iris.
Ophthalmic and Physiological Optics | 2011
Richard A. Armstrong; Leon N. Davies; Mark Dunne; Bernard Gilmartin
Citation information: Armstrong RA, Davies LN, Dunne MCM & Gilmartin B. Statistical guidelines for clinical studies of human vision. Ophthalmic Physiol Opt 2011, 31, 123–136. doi: 10.1111/j.1475‐1313.2010.00815.x
Investigative Ophthalmology & Visual Science | 2011
Amy L. Sheppard; Leon N. Davies
PURPOSE To assess the effect of ageing on in vivo human ciliary muscle morphology and contractility during accommodation. METHODS Seventy-nine subjects, aged 19-70 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscle in the relaxed state, and at stimulus vergence levels of -4 and -8 D, using anterior segment optical coherence tomography (AS-OCT). Objective refractions and axial lengths were also recorded. Linear regression analysis was performed to determine the effect of age on nasal and temporal ciliary muscle morphologic characteristics. RESULTS Ciliary muscle anterior length decreased significantly with age both nasally (R = 0.461, P = 0.001) and temporally (R = 0.619, P < 0.001) in emmetropic eyes. In a subset of 37 participants, ciliary muscle maximum width increased significantly with age, by 2.8 μm/year nasally (R = 0.54, P < 0.001) and 3.0 μm/year temporally (R = 0.44, P = 0.007), while the distance from the inner apex of the ciliary muscle to the scleral spur decreased significantly with age on both the nasal and temporal aspects (R = 0.47; P = 0.004 and R = 0.43; P = 0.009, respectively). During accommodation, changes to ciliary muscle thickness and length remained constant throughout life. CONCLUSIONS The human ciliary muscle undergoes age-dependent changes in morphology that suggest an antero-inwards displacement of muscle mass, particularly in emmetropic eyes. However, the morphologic changes observed appear not to affect the ability of the muscle to contract during accommodation, even in established presbyopes, thus supporting a lenticular model of presbyopia development.
Investigative Ophthalmology & Visual Science | 2010
Amy L. Sheppard; Leon N. Davies
PURPOSE To use anterior segment optical coherence tomography (AS-OCT) to analyze ciliary muscle morphology and changes with accommodation and axial ametropia. METHODS Fifty prepresbyopic volunteers, aged 19 to 34 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscles in the relaxed state and at stimulus vergence levels of -4 and -8 D. Objective accommodative responses and axial lengths were also recorded. Two-way, mixed-factor analyses of variance (ANOVAs) were used to assess the changes in ciliary muscle parameters with accommodation and determine whether these changes are dependent on the nasal-temporal aspect or axial length, whereas linear regression analysis was used to analyze the relationship between axial length and ciliary muscle length. RESULTS The ciliary muscle was longer (r = 0.34, P = 0.02), but not significantly thicker (F = 2.84, P = 0.06), in eyes with greater axial length. With accommodation, the ciliary muscle showed a contractile shortening (F = 42.9. P < 0.001), particularly anteriorly (F = 177.2, P < 0.001), and a thickening of the anterior portion (F= 46.2, P < 0.001). The ciliary muscle was thicker (F = 17.8, P < 0.001) and showed a greater contractile response on the temporal side. CONCLUSIONS The accommodative changes observed support an anterior, as well as centripetal, contractile shift of ciliary muscle mass.
Journal of Biomedical Optics | 2007
Mark Dunne; Leon N. Davies; James S. Wolffsohn
We assess the accuracy of the Visante anterior segment optical coherence tomographer (AS-OCT) and present improved formulas for measurement of surface curvature and axial separation. Measurements are made in physical model eyes. Accuracy is compared for measurements of corneal thickness (d(1)) and anterior chamber depth (d(2)) using-built-in AS-OCT software versus the improved scheme. The improved scheme enables measurements of lens thickness (d(3)) and surface curvature, in the form of conic sections specified by vertex radii and conic constants. These parameters are converted to surface coordinates for error analysis. The built-in AS-OCT software typically overestimates [mean+/-standard deviation(SD)]d(1) by +62+/-4 mum and d(2) by + 4 +/- 88 microm. The improved scheme reduces d(1) (-0.4 +/- 4 microm) and d(2) (0 +/- 49 microm) errors while also reducing d(3) errors from +218 +/- 90 (uncorrected) to +14 +/- 123 microm (corrected). Surface x coordinate errors gradually increase toward the periphery. Considering the central 6-mm zone of each surface, the x coordinate errors for anterior and posterior corneal surfaces reached +3 +/- 10 and 0 +/- 23 microm, respectively, with the improved scheme. Those of the anterior and posterior lens surfaces reached +2 +/- 22 and +11 +/- 71 microm, respectively. Our improved scheme reduced AS-OCT errors and could, therefore, enhance pre- and postoperative assessments of keratorefractive or cataract surgery, including measurement of accommodating intraocular lenses.