Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonard Buckbinder is active.

Publication


Featured researches published by Leonard Buckbinder.


Molecular and Cellular Biology | 2005

NF-κB RelA Phosphorylation Regulates RelA Acetylation

Lin Feng Chen; Samuel A. Williams; Yajun Mu; Hiroyasu Nakano; James M. Duerr; Leonard Buckbinder; Warner C. Greene

ABSTRACT The nuclear functions of NF-κB p50/RelA heterodimers are regulated in part by posttranslational modifications of its RelA subunit, including phosphorylation and acetylation. Acetylation at lysines 218, 221, and 310 differentially regulates RelAs DNA binding activity, assembly with IκBα, and transcriptional activity. However, it remains unclear whether the acetylation is regulated or simply due to stimulus-coupled nuclear translocation of NF-κB. Using anti-acetylated lysine 310 RelA antibodies, we detected p300-mediated acetylation of RelA in vitro and in vivo after stimulation of cells with tumor necrosis factor alpha (TNF-α). Coexpression of catalytically inactive mutants of the catalytic subunit of protein kinase A/mitogen- and stress-activated kinase 1 or IKK1/IKK2, which phosphorylate RelA on serine 276 or serine 536, respectively, sharply inhibited RelA acetylation on lysine 310. Furthermore, phosphorylation of RelA on serine 276 or serine 536 increased assembly of phospho-RelA with p300, which enhanced acetylation on lysine 310. Reconstitution of RelA-deficient murine embryonic fibroblasts with RelA S276A or RelA S536A decreased TNF-α-induced acetylation of lysine 310 and expression of the endogenous NF-κB-responsive E-selectin gene. These findings indicate that the acetylation of RelA at lysine 310 is importantly regulated by prior phosphorylation of serines 276 and 536. Such phosphorylated and acetylated forms of RelA display enhanced transcriptional activity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis

Leonard Buckbinder; D.T. Crawford; Hong Qi; Hua Zhu Ke; Lisa M. Olson; Kelly R. Long; Peter C. Bonnette; Amy Baumann; John E. Hambor; William A. Grasser; Lydia Codetta Pan; Thomas A. Owen; Michael Joseph Luzzio; Catherine A. Hulford; David Gebhard; Vishwas M. Paralkar; H.A. Simmons; John Charles Kath; W. Gregory Roberts; Steven L. Smock; Angel Guzman-Perez; Thomas A. Brown; Mei Li

Bone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2−/− mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts either in vivo or in culture. We find that PYK2−/− mice have high bone mass resulting from an unexpected increase in bone formation. Consistent with the in vivo findings, mouse bone marrow cultures show that PYK2 deficiency enhances differentiation and activity of osteoprogenitor cells, as does expressing a PYK2-specific short hairpin RNA or dominantly interfering proteins in human mesenchymal stem cells. Furthermore, the daily administration of a small-molecule PYK2 inhibitor increases bone formation and protects against bone loss in ovariectomized rats, an established preclinical model of postmenopausal osteoporosis. In summary, we find that PYK2 regulates the differentiation of early osteoprogenitor cells across species and that inhibitors of the PYK2 have potential as a bone anabolic approach for the treatment of osteoporosis.


Journal of Biological Chemistry | 2009

Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design.

Seungil Han; Anil Mistry; Jeanne S. Chang; David Cunningham; Matt Griffor; Peter C. Bonnette; Hong Wang; Boris A. Chrunyk; Gary E. Aspnes; Daniel P. Walker; Arthur D. Brosius; Leonard Buckbinder

Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.


Journal of Chemical Information and Modeling | 2011

Understanding the Impact of the P-loop Conformation on Kinase Selectivity

Cristiano R. W. Guimarães; Brajesh K. Rai; Michael John Munchhof; Shenping Liu; Jian Wang; Samit Kumar Bhattacharya; Leonard Buckbinder

This work addresses the link between selectivity and an unusual, folded conformation for the P-loop observed initially for MAP4K4 and subsequently for other kinases. Statistical and computational analyses of our crystal structure database demonstrate that inhibitors that induce the P-loop folded conformation tend to be more selective, especially if they take advantage of this specific conformation by interacting more favorably with a conserved Tyr or Phe residue from the P-loop.


Bioorganic & Medicinal Chemistry Letters | 2008

Trifluoromethylpyrimidine-based inhibitors of proline-rich tyrosine kinase 2 (PYK2): structure-activity relationships and strategies for the elimination of reactive metabolite formation.

Daniel P. Walker; F. Christopher Bi; Amit S. Kalgutkar; Jonathan N. Bauman; Sabrina X. Zhao; John R. Soglia; Gary E. Aspnes; Daniel W. Kung; Jacquelyn Klug-McLeod; Michael P. Zawistoski; Molly A. McGlynn; Robert M. Oliver; Matthew Francis Dunn; Jian-Cheng Li; Daniel T. Richter; Beth Cooper; John Charles Kath; Catherine A. Hulford; Christopher Autry; Michael Joseph Luzzio; Ethan Ung; W. Gregory Roberts; Peter C. Bonnette; Leonard Buckbinder; Anil Mistry; Matthew C. Griffor; Seungil Han; Angel Guzman-Perez

The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.


Journal of Proteomics | 2010

Phosphoproteomic characterization of PYK2 signaling pathways involved in osteogenesis

Peter C. Bonnette; Brett S. Robinson; Matthew P. Stokes; Arthur D. Brosius; Amy Baumann; Leonard Buckbinder

The PYK2 tyrosine kinase is a negative regulator of bone formation, but aside from the requirement for PYK2 kinase activity there has been little progress toward understanding of the molecular mechanism involved in this function. To gain insight into the signaling pathways modulated by PYK2 we sought to identify PYK2 substrates. Challenges inherent to a quantitative phosphoproteomic analysis for non-receptor tyrosine kinases were overcome by employing an inducible PYK2 overexpression system in NIH3T3 cells in combination with a selective PYK2 inhibitor. The identification of a number of known PYK2 substrates and interacting partners validated the methodology. Results of the inducible cell system were extended to a cell model of osteogenesis, examining the effect of the PYK2 inhibitor on the phosphorylation state of targets identified in the phosphoproteomic study. Consistent with phosphoproteomic analysis, increased osteogenesis associated with a selective PYK2 inhibitor was accompanied by reduced phosphorylation of paxillin, Gab1 and p130(Cas), along with reduction of phosphorylation levels of the Met activation loop. These results further confirmed the utility of the methodology and point to a previously unknown bi-directional activation pathway between PYK2 and Met.


Bioorganic & Medicinal Chemistry Letters | 2009

Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 (PYK2) show reduced hERG activity

Daniel P. Walker; Michael P. Zawistoski; Molly A. McGlynn; Jian-Cheng Li; Daniel W. Kung; Peter C. Bonnette; Amy Baumann; Leonard Buckbinder; Janet A. Houser; Jason Boer; Anil Mistry; Seungil Han; Li Xing; Angel Guzman-Perez

The synthesis, in vitro properties, and in vivo pharmacokinetics for a series of sulfoximine-substituted trifluoromethylpyrimidines as inhibitors of proline-rich tyrosine kinase, a target for the possible treatment of osteoporosis, are described. These compounds were prepared as surrogates of the corresponding sulfone compound 1. Sulfone 1 was an attractive PYK2 lead compound; however, subsequent studies determined this compound possessed high dofetilide binding, which is an early indicator of cardiovascular safety. Surprisingly, the corresponding sulfoximine analogs displayed significantly lower dofetilide binding, which, for N-methylsulfoximine (S)-14a, translated to lower activity in a patch clamp hERG K(+) ion channel screen. In addition, compound (S)-14a shows good oral exposure in a rat pharmacokinetic model.


Journal of Biological Chemistry | 2009

B Cell Receptor-induced Phosphorylation of Pyk2 and Focal Adhesion Kinase Involves Integrins and the Rap GTPases and Is Required for B Cell Spreading

Kathy W.K. Tse; May Dang-Lawson; Rosaline L. Lee; Doris Vong; Anica Bulic; Leonard Buckbinder; Michael R. Gold

Signaling by the B cell receptor (BCR) promotes integrin-mediated adhesion and cytoskeletal reorganization. This results in B cell spreading, which enhances the ability of B cells to bind antigens and become activated. Proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK) are related cytoplasmic tyrosine kinases that regulate cell adhesion, cell morphology, and cell migration. In this report we show that BCR signaling and integrin signaling collaborate to induce the phosphorylation of Pyk2 and FAK on key tyrosine residues, a modification that increases the kinase activity of Pyk2 and FAK. Activation of the Rap GTPases is critical for BCR-induced integrin activation as well as for BCR- and integrin-induced reorganization of the actin cytoskeleton. We now show that Rap activation is essential for BCR-induced phosphorylation of Pyk2 and for integrin-induced phosphorylation of Pyk2 and FAK. Moreover Rap-dependent phosphorylation of Pyk2 and FAK required an intact actin cytoskeleton as well as actin dynamics, suggesting that Rap regulates Pyk2 and FAK via its effects on the actin cytoskeleton. Importantly B cell spreading induced by BCR/integrin co-stimulation or by integrin engagement was inhibited by short hairpin RNA-mediated knockdown of either Pyk2 or FAK expression and by treatment with PF-431396, a chemical inhibitor that blocks the kinase activities of both Pyk2 and FAK. Thus Pyk2 and FAK are downstream targets of the Rap GTPases that play a key role in regulating B cell morphology.


Experimental Cell Research | 2011

Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

Colette J. Shen; Srivatsan Raghavan; Zhe Xu; Jan D. Baranski; Xiang Yu; Michele A. Wozniak; Jordan S. Miller; Mudit Gupta; Leonard Buckbinder; Christopher S. Chen

Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.


Journal of Pharmacology and Experimental Therapeutics | 2015

PF-1355, a Mechanism-Based Myeloperoxidase Inhibitor, Prevents Immune Complex Vasculitis and Anti–Glomerular Basement Membrane Glomerulonephritis

Wei Zheng; Roscoe L. Warner; Roger Benjamin Ruggeri; Chunyan Su; Christian Cortes; Athanasia Skoura; Jessica Ward; Kay Ahn; Amit S. Kalgutkar; Dexue Sun; Tristan S. Maurer; Paul D. Bonin; Carlin Okerberg; Walter F. Bobrowski; Thomas T. Kawabe; Yanwei Zhang; Timothy M. Coskran; Sammy Bell; Bhupesh Kapoor; Kent J. Johnson; Leonard Buckbinder

Small vessel vasculitis is a life-threatening condition and patients typically present with renal and pulmonary injury. Disease pathogenesis is associated with neutrophil accumulation, activation, and oxidative damage, the latter being driven in large part by myeloperoxidase (MPO), which generates hypochlorous acid among other oxidants. MPO has been associated with vasculitis, disseminated vascular inflammation typically involving pulmonary and renal microvasculature and often resulting in critical consequences. MPO contributes to vascular injury by 1) catabolizing nitric oxide, impairing vasomotor function; 2) causing oxidative damage to lipoproteins and endothelial cells, leading to atherosclerosis; and 3) stimulating formation of neutrophil extracellular traps, resulting in vessel occlusion and thrombosis. Here we report a selective 2-thiouracil mechanism-based MPO inhibitor (PF-1355 [2-(6-(2,5-dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide) and demonstrate that MPO is a critical mediator of vasculitis in mouse disease models. A pharmacokinetic/pharmacodynamic response model of PF-1355 exposure in relation with MPO activity was derived from mouse peritonitis. The contribution of MPO activity to vasculitis was then examined in an immune complex model of pulmonary disease. Oral administration of PF-1355 reduced plasma MPO activity, vascular edema, neutrophil recruitment, and elevated circulating cytokines. In a model of anti–glomerular basement membrane disease, formerly known as Goodpasture disease, albuminuria and chronic renal dysfunction were completely suppressed by PF-1355 treatment. This study shows that MPO activity is critical in driving immune complex vasculitis and provides confidence in testing the hypothesis that MPO inhibition will provide benefit in treating human vasculitic diseases.

Researchain Logo
Decentralizing Knowledge