Leonardo Caporali
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonardo Caporali.
Brain | 2010
Patrick Yu-Wai-Man; Philip G. Griffiths; Grainne S. Gorman; Charles Marques Lourenço; A. F. Wright; Michaela Auer-Grumbach; Antonio Toscano; Olimpia Musumeci; Maria Lucia Valentino; Leonardo Caporali; Costanza Lamperti; Chantal Tallaksen; P. Duffey; James Miller; Roger G. Whittaker; Mark R. Baker; Margaret Jackson; Michael P. Clarke; Baljean Dhillon; Birgit Czermin; Joanna D. Stewart; Gavin Hudson; Pascal Reynier; Dominique Bonneau; Wilson Marques; Guy Lenaers; Robert McFarland; Robert W. Taylor; Douglass M. Turnbull; Marcela Votruba
Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal ‘dominant optic atrophy plus’ variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44–6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08–4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment.
Brain | 2014
Carla Giordano; Luisa Iommarini; Luca Giordano; Alessandra Maresca; Annalinda Pisano; Maria Lucia Valentino; Leonardo Caporali; Rocco Liguori; Stefania Deceglie; Marina Roberti; Francesca Fanelli; Flavio Fracasso; Fred N. Ross-Cisneros; Pio D’Adamo; Gavin Hudson; Angela Pyle; Patrick Yu-Wai-Man; Patrick F. Chinnery; Massimo Zeviani; Solange Rios Salomão; Adriana Berezovsky; Rubens Belfort; Dora Fix Ventura; Milton Rocha Moraes; Milton N. Moraes Filho; Piero Barboni; F. Sadun; Annamaria De Negri; Alfredo A. Sadun; Andrea Tancredi
The mechanisms of incomplete penetrance in Leber’s hereditary optic neuropathy are elusive. Giordano et al. show that mitochondrial DNA content and mitochondrial mass are both increased in tissues and cells from unaffected mutation carriers relative to affected relatives and control individuals. Upregulation of mitochondrial biogenesis may represent a therapeutic target.
Annals of Neurology | 2015
Valerio Carelli; Olimpia Musumeci; Leonardo Caporali; Claudia Zanna; Chiara La Morgia; Valentina Del Dotto; Anna Maria Porcelli; Michela Rugolo; Maria Lucia Valentino; Luisa Iommarini; Alessandra Maresca; Piero Barboni; Michele Carbonelli; Costantino Trombetta; Enza Maria Valente; Simone Patergnani; Carlotta Giorgi; Paolo Pinton; Giovanni Rizzo; Caterina Tonon; Raffaele Lodi; Patrizia Avoni; Rocco Liguori; Agostino Baruzzi; Antonio Toscano; Massimo Zeviani
Mounting evidence links neurodegenerative disorders such as Parkinson disease and Alzheimer disease with mitochondrial dysfunction, and recent emphasis has focused on mitochondrial dynamics and quality control. Mitochondrial dynamics and mtDNA maintenance is another link recently emerged, implicating mutations in the mitochondrial fusion genes OPA1 and MFN2 in the pathogenesis of multisystem syndromes characterized by neurodegeneration and accumulation of mtDNA multiple deletions in postmitotic tissues. Here, we report 2 Italian families affected by dominant chronic progressive external ophthalmoplegia (CPEO) complicated by parkinsonism and dementia.
Nature Genetics | 2015
Alexander J. Abrams; Robert B. Hufnagel; Adriana P. Rebelo; Claudia Zanna; Neville Patel; Michael Gonzalez; Ion J. Campeanu; Laurie B. Griffin; Saskia Groenewald; Alleene V. Strickland; Feifei Tao; Fiorella Speziani; Lisa Abreu; Rebecca Schüle; Leonardo Caporali; Chiara La Morgia; Alessandra Maresca; Rocco Liguori; Raffaele Lodi; Zubair M. Ahmed; Kristen L. Sund; Xinjian Wang; Laura A. Krueger; Yanyan Peng; Carlos E. Prada; Cynthia A. Prows; Elizabeth K. Schorry; Anthony Antonellis; Holly H. Zimmerman; Omar A. Abdul-Rahman
Dominant optic atrophy (DOA) and axonal peripheral neuropathy (Charcot-Marie-Tooth type 2, or CMT2) are hereditary neurodegenerative disorders most commonly caused by mutations in the canonical mitochondrial fusion genes OPA1 and MFN2, respectively. In yeast, homologs of OPA1 (Mgm1) and MFN2 (Fzo1) work in concert with Ugo1, for which no human equivalent has been identified thus far. By whole-exome sequencing of patients with optic atrophy and CMT2, we identified four families with recessive mutations in SLC25A46. We demonstrate that SLC25A46, like Ugo1, is a modified carrier protein that has been recruited to the outer mitochondrial membrane and interacts with the inner membrane remodeling protein mitofilin (Fcj1). Loss of function in cultured cells and in zebrafish unexpectedly leads to increased mitochondrial connectivity, while severely affecting the development and maintenance of neurons in the fish. The discovery of SLC25A46 strengthens the genetic overlap between optic atrophy and CMT2 while exemplifying a new class of modified solute transporters linked to mitochondrial dynamics.
Molecular and Cellular Neuroscience | 2013
Alessandra Maresca; Chiara La Morgia; Leonardo Caporali; Maria Lucia Valentino; Valerio Carelli
Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Lebers hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Lebers hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled ‘Mitochondrial function and dysfunction in neurodegeneration’.
Frontiers in Genetics | 2015
Alessandra Maresca; Mirko Zaffagnini; Leonardo Caporali; Valerio Carelli; Claudia Zanna
Autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E) are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5)-methyltransferase 1 (DNMT1). DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy, and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA) suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however, mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is regulated and executed?
Brain | 2015
Rosamaria Santarelli; Roberta Rossi; Pietro Scimemi; Elona Cama; Maria Lucia Valentino; Chiara La Morgia; Leonardo Caporali; Rocco Liguori; Vincenzo Magnavita; Anna Monteleone; Ariella Biscaro; Edoardo Arslan; Valerio Carelli
Santarelli et al. reveal that hearing impairments in patients carrying OPA1 missense mutations are the result of disordered synchrony in auditory nerve fibre activity owing to degeneration of terminal dendrites. Cochlear implantation improves speech perception and synchronous activation of auditory pathways in these patients by bypassing the lesion site.
Annals of Neurology | 2016
Roberto De Giorgio; L. Pironi; Rita Rinaldi; Elisa Boschetti; Leonardo Caporali; Mariantonietta Capristo; Carlo Casali; Giovanna Cenacchi; Manuela Contin; Roberto D'Angelo; Antonietta D'Errico; Laura Ludovica Gramegna; Raffaele Lodi; Alessandra Maresca; Susan Mohamed; Maria Cristina Morelli; Valentina Papa; Caterina Tonon; Vitaliano Tugnoli; Valerio Carelli; Roberto D'Alessandro; Antonio Daniele Pinna
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal, recessive disease caused by mutations in the gene encoding thymidine phosphorylase, leading to reduced enzymatic activity, toxic nucleoside accumulation, and secondary mitochondrial DNA damage. Thymidine phosphorylase replacement has been achieved by allogeneic hematopoietic stem cell transplantation, a procedure hampered by high mortality. Based on high thymidine phosphorylase expression in the liver, a 25‐year‐old severely affected patient underwent liver transplantation. Serum levels of toxic nucleosides rapidly normalized. At 400 days of follow‐up, the patients clinical conditions are stable. We propose liver transplantation as a new therapy for MNGIE. Ann Neurol 2016;80:448–455
Brain | 2015
Valerio Carelli; Mario Sabatelli; Rosalba Carrozzo; Teresa Rizza; Simone Schimpf; Bernd Wissinger; Claudia Zanna; Michela Rugolo; Chiara La Morgia; Leonardo Caporali; Michele Carbonelli; Piero Barboni; Caterina Tonon; Raffaele Lodi; Enrico Bertini
Sir, We have been following with great interest the developments in the field of phenotypic diversity associated with mutations in the OPA1 gene, having contributed to describe the DOA ‘ plus ’ phenotype in a joint effort with other groups (Amati-Bonneau et al. , 2008; Hudson et al. , 2008; Yu-Wai-Mann et al. , 2010). A developing story concerns the increasingly recognized cases associated with OPA1 mutations presenting with a childhood onset syndrome combining optic atrophy with spastic paraplegia, cerebellar ataxia and possibly other neurological features (Yu-Wai-Mann et al. , 2010; Marelli et al. , 2011; Pretegiani et al. , 2011; Schaaf et al. , 2011). This phenotype fits the description of Behr in 1909, who presented a series of cases of ‘complicated familial optic atrophy with childhood onset’ including pyramidal signs, ataxia, posterior column sensory loss and mental retardation (Behr, 1909). While most of these cases apparently harboured heterozygous OPA1 mutations (Yu-Wai-Mann et al. , 2010; Marelli et al. , 2011; Pretegiani et al. , 2011), the case presented by Schaaf et al. (2011) had the peculiar occurrence of compound heterozygosity for two different OPA1 mutations, the p.V903GfsX3 frameshift deletion and the p.I382M missense mutation, respectively, which suggested that bi-allelic OPA1 mutations may lead to a complicated form of optic atrophy, i.e. Behr syndrome. Most recently, Bonifert et al. (2014) further confirmed the occurrence of DOA ‘ plus ’ cases with bi-allelic OPA1 mutations, one of the alleles carrying the same p.I382M missense mutation. We here add our observation of a similar bi-allelic OPA1 case with Behr syndrome. This proband is a 20-year-old Italian boy, born from unrelated parents (Fig. 1A, IV-4 in the pedigree), who presented a congenital nystagmus at birth and bilateral optic atrophy was recognized in the first …
The International Journal of Biochemistry & Cell Biology | 2015
Valerio Carelli; Alessandra Maresca; Leonardo Caporali; Selena Trifunov; Claudia Zanna; Michela Rugolo
Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.