Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Zanna is active.

Publication


Featured researches published by Claudia Zanna.


Journal of Biological Chemistry | 2003

Leber's Hereditary Optic Neuropathy (LHON) Pathogenic Mutations Induce Mitochondrial-dependent Apoptotic Death in Transmitochondrial Cells Incubated with Galactose Medium

Anna Ghelli; Claudia Zanna; Anna Maria Porcelli; A. H. V. Schapira; Andrea Martinuzzi; Valerio Carelli; Michela Rugolo

Lebers hereditary optic neuropathy (LHON), a maternally inherited form of central vision loss, is associated with mitochondrial DNA pathogenic point mutations affecting different subunits of complex I. We here report that osteosarcoma-derived cytoplasmic hybrids (cybrid) cell lines harboring one of the three most frequent LHON pathogenic mutations, at positions 11778/ND4, 3460/ND1, and 14484/ND6, undergo cell death when galactose replaces glucose in the medium, contrary to control cybrids that maintain some growth capabilities. This is a well known way to produce a metabolic stress, forcing the cells to rely on the mitochondrial respiratory chain to produce ATP. We demonstrate that LHON cybrid cell death is apoptotic, showing chromatin condensation and nuclear DNA laddering. Moreover, we also document the mitochondrial involvement in the activation of the apoptotic cascade, as shown by the increased release of cytochromec into the cytosol in LHON cybrid cells as compared with controls. Cybrids bearing the 3460/ND1 and 14484/ND6 mutations seemed more readily prone to undergo apoptosis as compared with the 11778/ND4 mutation. In conclusion, LHON cybrid cells forced by the reduced rate of glycolytic flux to utilize oxidative metabolism are sensitized to an apoptotic death through a mechanism involving mitochondria.


Genome Research | 2011

OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution

Ghizlane Elachouri; Sara Vidoni; Claudia Zanna; Alexandre Pattyn; Hassan Boukhaddaoui; Karen Gaget; Patrick Yu-Wai-Man; Giuseppe Gasparre; Emmanuelle Sarzi; Cécile Delettre; Aurélien Olichon; Dominique Loiseau; Pascal Reynier; Patrick F. Chinnery; Agnès Rötig; Valerio Carelli; Christian P. Hamel; Michela Rugolo; Guy Lenaers

Eukaryotic cells harbor a small multiploid mitochondrial genome, organized in nucleoids spread within the mitochondrial network. Maintenance and distribution of mitochondrial DNA (mtDNA) are essential for energy metabolism, mitochondrial lineage in primordial germ cells, and to prevent mtDNA instability, which leads to many debilitating human diseases. Mounting evidence suggests that the actors of the mitochondrial network dynamics, among which is the intramitochondrial dynamin OPA1, might be involved in these processes. Here, using siRNAs specific to OPA1 alternate spliced exons, we evidenced that silencing of the OPA1 variants including exon 4b leads to mtDNA depletion, secondary to inhibition of mtDNA replication, and to marked alteration of mtDNA distribution in nucleoid and nucleoid distribution throughout the mitochondrial network. We demonstrate that a small hydrophobic 10-kDa peptide generated by cleavage of the OPA1-exon4b isoform is responsible for this process and show that this peptide is embedded in the inner membrane and colocalizes and coimmunoprecipitates with nucleoid components. We propose a novel synthetic model in which a peptide, including two trans-membrane domains derived from the N terminus of the OPA1-exon4b isoform in vertebrates or from its ortholog in lower eukaryotes, might contribute to nucleoid attachment to the inner mitochondrial membrane and promotes mtDNA replication and distribution. Thus, this study places OPA1 as a direct actor in the maintenance of mitochondrial genome integrity.


Annals of Neurology | 2015

Syndromic parkinsonism and dementia associated with OPA1 missense mutations.

Valerio Carelli; Olimpia Musumeci; Leonardo Caporali; Claudia Zanna; Chiara La Morgia; Valentina Del Dotto; Anna Maria Porcelli; Michela Rugolo; Maria Lucia Valentino; Luisa Iommarini; Alessandra Maresca; Piero Barboni; Michele Carbonelli; Costantino Trombetta; Enza Maria Valente; Simone Patergnani; Carlotta Giorgi; Paolo Pinton; Giovanni Rizzo; Caterina Tonon; Raffaele Lodi; Patrizia Avoni; Rocco Liguori; Agostino Baruzzi; Antonio Toscano; Massimo Zeviani

Mounting evidence links neurodegenerative disorders such as Parkinson disease and Alzheimer disease with mitochondrial dysfunction, and recent emphasis has focused on mitochondrial dynamics and quality control. Mitochondrial dynamics and mtDNA maintenance is another link recently emerged, implicating mutations in the mitochondrial fusion genes OPA1 and MFN2 in the pathogenesis of multisystem syndromes characterized by neurodegeneration and accumulation of mtDNA multiple deletions in postmitotic tissues. Here, we report 2 Italian families affected by dominant chronic progressive external ophthalmoplegia (CPEO) complicated by parkinsonism and dementia.


PLOS ONE | 2009

The background of mitochondrial DNA haplogroup J increases the sensitivity of Leber's hereditary optic neuropathy cells to 2,5-hexanedione toxicity.

Anna Ghelli; Anna Maria Porcelli; Claudia Zanna; Sara Vidoni; Stefano Mattioli; Anna Barbieri; Luisa Iommarini; Maria Pala; Alessandro Achilli; Antonio Torroni; Michela Rugolo; Valerio Carelli

Lebers hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinsons disease.


Nature Genetics | 2015

Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder

Alexander J. Abrams; Robert B. Hufnagel; Adriana P. Rebelo; Claudia Zanna; Neville Patel; Michael Gonzalez; Ion J. Campeanu; Laurie B. Griffin; Saskia Groenewald; Alleene V. Strickland; Feifei Tao; Fiorella Speziani; Lisa Abreu; Rebecca Schüle; Leonardo Caporali; Chiara La Morgia; Alessandra Maresca; Rocco Liguori; Raffaele Lodi; Zubair M. Ahmed; Kristen L. Sund; Xinjian Wang; Laura A. Krueger; Yanyan Peng; Carlos E. Prada; Cynthia A. Prows; Elizabeth K. Schorry; Anthony Antonellis; Holly H. Zimmerman; Omar A. Abdul-Rahman

Dominant optic atrophy (DOA) and axonal peripheral neuropathy (Charcot-Marie-Tooth type 2, or CMT2) are hereditary neurodegenerative disorders most commonly caused by mutations in the canonical mitochondrial fusion genes OPA1 and MFN2, respectively. In yeast, homologs of OPA1 (Mgm1) and MFN2 (Fzo1) work in concert with Ugo1, for which no human equivalent has been identified thus far. By whole-exome sequencing of patients with optic atrophy and CMT2, we identified four families with recessive mutations in SLC25A46. We demonstrate that SLC25A46, like Ugo1, is a modified carrier protein that has been recruited to the outer mitochondrial membrane and interacts with the inner membrane remodeling protein mitofilin (Fcj1). Loss of function in cultured cells and in zebrafish unexpectedly leads to increased mitochondrial connectivity, while severely affecting the development and maintenance of neurons in the fish. The discovery of SLC25A46 strengthens the genetic overlap between optic atrophy and CMT2 while exemplifying a new class of modified solute transporters linked to mitochondrial dynamics.


Cell Death & Differentiation | 2004

Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl conductance

Anna Maria Porcelli; Anna Ghelli; Claudia Zanna; Pierluigi Valente; Stefano Ferroni; Michela Rugolo

AbstractWe show that dysregulation of the Cl− homeostasis mediates the staurosporine-induced apoptotic cell death in human ECV304 cells. A pronounced apoptotic volume decrease (AVD), and an increase in plasma membrane Cl− conductance were early (<1 h) events following staurosporine challenge. Both processes were involved in apoptotic death, as demonstrated by the observation that the Cl− channel blocker phloretin inhibited both the staurosporine-evoked Cl− current and AVD, and preserved cell viability. Prolonged incubation (>2 h) with staurosporine caused a decrease in intracellular pH, which, however, was not required for the progression of the apoptotic process, because inhibitors of proton extrusion pathways, which lowered cytoplasmic pH, failed to inhibit both caspase-3 activation and DNA laddering. Moreover, clamping the cytosolic pH to an alkaline value did not prevent the apoptotic cell death. Collectively, these data demonstrate that staurosporine-mediated apoptosis of ECV304 cells is caused by the upregulation of Cl− channel activity and subsequent AVD, but is independent of intracellular acidification.


Annals of the New York Academy of Sciences | 2003

Apoptotic Cell Death of Cybrid Cells Bearing Leber's Hereditary Optic Neuropathy Mutations Is Caspase Independent

Claudia Zanna; Anna Ghelli; Anna Maria Porcelli; Valerio Carelli; Andrea Martinuzzi; Michela Rugolo

Abstract: Lebers hereditary optic neuropathy (LHON) is a maternally inherited disease characterized by selective death of retinal ganglion cells. Three pathogenic mtDNA point mutations induce an impairment of oxidative phosphorylation. We have investigated whether the release of cytochrome c during incubation of LHON cybrids in galactose medium leads to activation of the executive caspase‐3 and to alteration of the energetic status of cells. From our research, it can be concluded that apoptotic cell death induced in LHON cybrid by galactose medium is caspase independent. It remains to be explained how the significant fragmentation of intranucleosomal DNA observed in LHON cybrids could also occur in the absence of caspase activation.


Human Molecular Genetics | 2013

The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes

Anna Ghelli; Concetta Valentina Tropeano; Maria Antonietta Calvaruso; Alessandra Marchesini; Luisa Iommarini; Anna Maria Porcelli; Claudia Zanna; Vera De Nardo; Andrea Martinuzzi; John Vissing; Ivana Kurelac; Giuseppe Gasparre; Nur Selamoglu; Fevzi Daldal; Michela Rugolo

Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe exercise intolerance and multisystem manifestations. In this study, we characterized the biochemical properties of cybrids carrying this mutation and report that the homoplasmic p.278Y>C mutation caused a dramatic reduction in the CIII activity and in CIII-driven mitochondrial ATP synthesis. However, the CI, CI + CIII and CII + CIII activities and the rate of ATP synthesis driven by the CI or CII substrate were only partially reduced or unaffected. Consistent with these findings, mutated cybrids maintained the mitochondrial membrane potential in the presence of oligomycin, indicating that it originated from the respiratory electron transport chain. The p.278Y>C mutation enhanced superoxide production, as indicated by direct measurements in mitochondria and by the imbalance of glutathione homeostasis in intact cybrids. Remarkably, although the assembly of CI or CIII was not affected, the examination of respiratory supercomplexes revealed that the amounts of CIII dimer and III2IV1 were reduced, whereas those of I1III2IVn slightly increased. We therefore suggest that the deleterious effects of p.278Y>C mutation on cytochrome b are palliated when CIII is assembled into the supercomplexes I1III2IVn, in contrast to when it is found alone. These findings underline the importance of supramolecular interactions between complexes for maintaining a basal respiratory chain activity and shed light to the molecular basis of disease manifestations associated with this mutation.


Frontiers in Genetics | 2015

DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

Alessandra Maresca; Mirko Zaffagnini; Leonardo Caporali; Valerio Carelli; Claudia Zanna

Autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E) are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5)-methyltransferase 1 (DNMT1). DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy, and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA) suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however, mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is regulated and executed?


Antioxidants & Redox Signaling | 2013

Why Mitochondria Must Fuse to Maintain Their Genome Integrity

Sara Vidoni; Claudia Zanna; Michela Rugolo; Emmanuelle Sarzi; Guy Lenaers

SIGNIFICANCE The maintenance of mitochondrial genome integrity is a major challenge for cells to sustain energy production by respiration. RECENT ADVANCES Recently, mitochondrial membrane dynamics emerged as a key process contributing to prevent mitochondrial DNA (mtDNA) alterations. Indeed, both fundamental and clinical data suggest that disruption of mitochondrial fusion, related to mutations in the OPA1, MFN2, PINK1, and PARK2 genes, leads to the accumulation of mutations in the mitochondrial genome. CRITICAL ISSUES We discuss here the possibility that mitochondrial fusion acts as a direct mechanism to prevent the generation of altered mtDNA and to eliminate mutated deleterious genomes either by trans-complementation or by mitophagy. FUTURE DIRECTIONS Finally, we conclude this review with a short evolutionary comparison between the mechanisms involved in mitochondrial and bacterial modes of genome distribution and plasticity, highlighting possible common conserved processes required for the maintenance of their genome integrity, which should inspire our future investigations.

Collaboration


Dive into the Claudia Zanna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge