Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo De La Fuente is active.

Publication


Featured researches published by Leonardo De La Fuente.


Applied and Environmental Microbiology | 2007

Assessing Adhesion Forces of Type I and Type IV Pili of Xylella fastidiosa Bacteria by Use of a Microfluidic Flow Chamber

Leonardo De La Fuente; Emilie Montanes; Yizhi Meng; Yaxin Li; Thomas J. Burr; Harvey C. Hoch; Mingming Wu

ABSTRACT Xylella fastidiosa, a bacterium responsible for Pierces disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 ± 11 pN. Mutant cells possessing only type I pili required a force of 204 ± 22 pN for removal, whereas cells possessing only type IV pili required 119 ± 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed.


Applied and Environmental Microbiology | 2012

Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

Luisa F. Cruz; Paul A. Cobine; Leonardo De La Fuente

ABSTRACT Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.


Journal of Bacteriology | 2007

Mutations in Type I and Type IV Pilus Biosynthetic Genes Affect Twitching Motility Rates in Xylella fastidiosa

Leonardo De La Fuente; Thomas J. Burr; Harvey C. Hoch

Xylella fastidiosa possesses both type I and type IV pili at the same cell pole. By use of a microfluidic device, the speed of twitching movement by wild-type cells on a glass surface against the flow direction of media was measured as 0.86 (standard error [SE], 0.04) microm min(-1). A type I pilus mutant (fimA) moved six times faster (4.85 [SE, 0.27] microm min(-1)) and a pilY1 mutant moved three times slower (0.28 [SE, 0.03] microm min(-1)) than wild-type cells. Type I pili slow the rate of movement, while the putative type IV pilus protein PilY1 is likely important for attachment to surfaces.


Applied and Environmental Microbiology | 2008

Autoaggregation of Xylella fastidiosa Cells Is Influenced by Type I and Type IV Pili

Leonardo De La Fuente; Thomas J. Burr; Harvey C. Hoch

ABSTRACT Autoaggregation of widely dispersed Xylella fastidiosa cells into compact cell masses occurred over a period of hours following 7 to 11 days of growth in microfluidic chambers. Studies involving the use of mutants defective in polarly positioned type I (fimA-negative), type IV (pilB-negative), or both type I and IV (fimA- and pilO-negative) pili revealed the importance and role of pili in the autoaggregation process.


Carbohydrate Polymers | 2015

Preparation of alginate–chitosan fibers with potential biomedical applications

Bernal Sibaja; Edward Culbertson; Patrick Marshall; Ramiz Boy; Roy M. Broughton; Alejandro Aguilar Solano; Marianelly Esquivel; Jennifer K. Parker; Leonardo De La Fuente; Maria L. Auad

The preparation of alginate-chitosan fibers, through wet spinning technique, as well as the study of their properties as a function of chitosans molecular weight and retention time in the coagulation bath, is presented and discussed in this work. Scanning electron microscopy (SEM) revealed that the fibers presented irregular and rough surfaces, with a grooved and heavily striated morphology distributed throughout the structure. Dynamic mechanical analysis (DMA) showed that, with the exception of elongation at break, the incorporation of chitosan into the fibers improved their tensile properties. The in vitro release profile of sulfathiazole as a function of chitosans molecular weight indicated that the fibers are viable carriers of drugs. Kinetic models showed that the release of the model drug is first-order, and the release mechanism is governed by the Korsmeyer-Peppas model. Likewise, fibers loaded with sulfathiazole showed excellent inhibition of Escherichia coli growth after an incubation time of 24h at 37 °C.


Genes | 2011

Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria

Saul Burdman; Ofir Bahar; Jennifer K. Parker; Leonardo De La Fuente

Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes. Despite the multiple functionality of T4P and their well-established role in pathogenicity of animal pathogenic bacteria, relatively little attention has been given to the role of T4P in plant pathogenic bacteria. Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens. The aim of this review is to summarize the current knowledge about T4P genetic machinery and its role in the interactions between phytopathogenic bacteria and their plant hosts.


Fems Microbiology Letters | 2010

Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers

Ofir Bahar; Leonardo De La Fuente; Saul Burdman

Acidovorax citrulli is the causal agent of bacterial fruit blotch of cucurbits. We have shown previously that type IV pili (TFP) are required for wild-type levels of virulence of A. citrulli on melon and that this pathogen can colonize and move thorough the xylem vessels of host seedlings. Here, comparative studies between wild-type and TFP mutant strains using microfluidic flow chambers demonstrated that TFP play a critical role in both the surface attachment and the biofilm formation of A. citrulli under a medium flow. Additionally, TFP null mutants were unable to perform twitching movement against the direction of medium flow. Assays using a flagellin mutant showed that, in contrast to TFP, polar flagella do not contribute to the adhesion and biofilm formation of A. citrulli under tested conditions. Also, flagellum-mediated swimming motility of wild-type strains was not observed under medium flow. These results imply that TFP may play an important role in colonization and spread in the xylem vessels under sap flow conditions, while polar flagella could be more important for spread during periods of time when xylem flow is minimal.


Applied and Environmental Microbiology | 2014

Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions.

Fernando Navarrete; Leonardo De La Fuente

ABSTRACT The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.


PLOS ONE | 2013

The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

Leonardo De La Fuente; Jennifer K. Parker; Jonathan E. Oliver; Shea Granger; Phillip M. Brannen; Edzard Van Santen; Paul A. Cobine

Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.


PLOS ONE | 2013

Xylella fastidiosa Differentially Accumulates Mineral Elements in Biofilm and Planktonic Cells

Paul A. Cobine; Luisa F. Cruz; Fernando Navarrete; Daniel Duncan; Melissa Tygart; Leonardo De La Fuente

Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen.

Collaboration


Dive into the Leonardo De La Fuente's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. G. Cogan

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge