Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Burr is active.

Publication


Featured researches published by Thomas J. Burr.


Journal of Bacteriology | 2005

Upstream Migration of Xylella fastidiosa via Pilus-Driven Twitching Motility

Yizhi Meng; Yaxin Li; Cheryl D. Galvani; Guixia Hao; James N. Turner; Thomas J. Burr; Harvey C. Hoch

Xylella fastidiosa is a xylem-limited nonflagellated bacterium that causes economically important diseases of plants by developing biofilms that block xylem sap flow. How the bacterium is translocated downward in the host plants vascular system against the direction of the transpiration stream has long been a puzzling phenomenon. Using microfabricated chambers designed to mimic some of the features of xylem vessels, we discovered that X. fastidiosa migrates via type IV-pilus-mediated twitching motility at speeds up to 5 mum min(-1) against a rapidly flowing medium (20,000 mum min(-1)). Electron microscopy revealed that there are two length classes of pili, long type IV pili (1.0 to 5.8 mum) and short type I pili (0.4 to 1.0 mum). We further demonstrated that two knockout mutants (pilB and pilQ mutants) that are deficient in type IV pili do not twitch and are inhibited from colonizing upstream vascular regions in planta. In addition, mutants with insertions in pilB or pilQ (possessing type I pili only) express enhanced biofilm formation, whereas a mutant with an insertion in fimA (possessing only type IV pili) is biofilm deficient.


Critical Reviews in Plant Sciences | 1984

Beneficial plant bacteria

Thomas J. Burr; Anthony Caesar; M. N. Schrolh

The recognition of plant growth‐promoting rhizobacteria (PGPR), a group of beneficial plant bacteria, as potentially useful for stimulating plant growth and increasing crop yields has evolved over the past several years to where today researchers are able to repeatedly use them successfully in field experiments. Increased growth and yields of potato, sugar beet, and radish have been reported. The most effective strains of PGPR have been fluorescent Pseudomonas spp. Growth increases appear to result from the suppression of soil microorganisms that are deleterious to plant growth. A possible mode of action is through the production of the siderophore pseudobactin, that chelates iron in the plant rhizosphere making it unavailable to the harmful microflora. Commercial applications of PGPR are being tested and are frequently successful; however, a better understanding of the microbial interactions that result in plant growth increases will greatly increase the success rate of field applications.


Journal of Bacteriology | 2009

Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria

Steven C. Slater; Barry S. Goldman; Brad Goodner; João C. Setubal; Stephen K. Farrand; Eugene W. Nester; Thomas J. Burr; Lois M. Banta; Allan W. Dickerman; Ian T. Paulsen; L. Otten; Garret Suen; Roy D. Welch; Nalvo F. Almeida; Frank Arnold; Oliver T. Burton; Zijin Du; Adam D. Ewing; Eric Godsy; Sara E. Heisel; Kathryn L. Houmiel; Jinal Jhaveri; Jing Lu; Nancy M. Miller; Stacie Norton; Qiang Chen; Waranyoo Phoolcharoen; Victoria Ohlin; Dan Ondrusek; Nicole Pride

The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.


Applied and Environmental Microbiology | 2007

Assessing Adhesion Forces of Type I and Type IV Pili of Xylella fastidiosa Bacteria by Use of a Microfluidic Flow Chamber

Leonardo De La Fuente; Emilie Montanes; Yizhi Meng; Yaxin Li; Thomas J. Burr; Harvey C. Hoch; Mingming Wu

ABSTRACT Xylella fastidiosa, a bacterium responsible for Pierces disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 ± 11 pN. Mutant cells possessing only type I pili required a force of 204 ± 22 pN for removal, whereas cells possessing only type IV pili required 119 ± 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed.


Journal of Bacteriology | 2007

Mutations in Type I and Type IV Pilus Biosynthetic Genes Affect Twitching Motility Rates in Xylella fastidiosa

Leonardo De La Fuente; Thomas J. Burr; Harvey C. Hoch

Xylella fastidiosa possesses both type I and type IV pili at the same cell pole. By use of a microfluidic device, the speed of twitching movement by wild-type cells on a glass surface against the flow direction of media was measured as 0.86 (standard error [SE], 0.04) microm min(-1). A type I pilus mutant (fimA) moved six times faster (4.85 [SE, 0.27] microm min(-1)) and a pilY1 mutant moved three times slower (0.28 [SE, 0.03] microm min(-1)) than wild-type cells. Type I pili slow the rate of movement, while the putative type IV pilus protein PilY1 is likely important for attachment to surfaces.


In Vitro Cellular & Developmental Biology – Plant | 1999

Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens

B. Xue; K. S. Ling; C. L. Reid; S. Krastanova; Mary Sekiya; E. A. Momol; S. Sule; J. Mozsar; Dennis Gonsalves; Thomas J. Burr

SummaryTo facilitate the development of transgenic grapevines that are resistant to grapevine fanleaf virus (GFLV), grapevine leafroll-associated closterovirus (GLRaV-3) and crown gall diseases, we developed a rapid system for regenerating root-stocks: Couderc 3309, Vitis riparia ‘Gloire de Montpellier’, Teleki 5C, Millardet et De Grasset 101-14, and 110 Richter via somatic embryogenesis. Embryo culture and grape regeneration were accomplished with four media. Embryogenic calluses from anthers were induced in the initiation medium [MS basic medium containing 20 g sucrose per L, 1.1 mg 2,4-dichlorophenoxyacetic acid (2,4-D) per L, 0.2 mg N6-benzyladenine (BA) per L, and 0.8% Noble agar). The percentage of anthers that developed into embryogenic calli ranged from 2 to 16.3% depending on the rootstock. Calluses with early globular stage embryos were cocultivated with Agrobacterium tumefaciens strain C58Z707 containing the gene constructs of interest. The genes were sense-oriented translatable and antisense coat protein genes from GFLV and GLRaV-3, a truncated HSP90-related gene of GLRaV-3 (43K), and a virE2 del B gene from A. tumefaciens strain C58. Twenty independent transformation experiments were performed on five rootstocks. After 3–4 mo. under kanamycin selection, secondary embryos were recovered on differentiation medium (1/2 MS salts with 10 g sucrose per L, 4.6 g glycerol per L, and 0.8% Noble agar). Embryos that were transformed were regenerated on a medium containing MS salts with 20 g sucrose per L, 4.6 g glycerol per L, 1 g casein hydrolysate per L, and 0.8% Noble agar. Elongated embryos were then transferred to a rooting medium supplemented with 0.1 mg BA per L, 3 g activated charcoal per L, 1.5% sucrose, and 0.65% Bacto agar. A total of 928 independent putative transgenic plants were propagated in the greenhouse. All plants were tested for neomycin phosphotransferase II expression by enzyme-linked immunosorbent assay (ELISA). The presence of transgenes was assessed by polymerase chain reaction and Southern analysis. ELISA revealed various levels of expression of GFLV coat protein in transgenic plants of Couderc 3309. The transgenic rootstocks that have been generated are being screened to determine whether transgenes have conferred resistance to the virus and crown gall diseases.


Applied and Environmental Microbiology | 2008

Autoaggregation of Xylella fastidiosa Cells Is Influenced by Type I and Type IV Pili

Leonardo De La Fuente; Thomas J. Burr; Harvey C. Hoch

ABSTRACT Autoaggregation of widely dispersed Xylella fastidiosa cells into compact cell masses occurred over a period of hours following 7 to 11 days of growth in microfluidic chambers. Studies involving the use of mutants defective in polarly positioned type I (fimA-negative), type IV (pilB-negative), or both type I and IV (fimA- and pilO-negative) pili revealed the importance and role of pili in the autoaggregation process.


Fems Microbiology Letters | 2009

Grapevine xylem sap enhances biofilm development by Xylella fastidiosa

Paulo A. Zaini; Leonardo De La Fuente; Harvey C. Hoch; Thomas J. Burr

Xylella fastidiosa is able to form biofilms within xylem vessels of many economically important crops. Vessel blockage is believed to be a major contributor to disease development caused by this bacterium. This report shows that Vitis riparia xylem sap increases growth rate and induces a characteristic biofilm architecture as compared with biofilms formed in PD2 and PW media. In addition, stable cultures could be maintained, frozen and reestablished in xylem sap. These findings are important as xylem sap provides a natural medium that facilitates the identification of virulence determinants of Pierces disease.


Molecular Plant-microbe Interactions | 2003

A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco.

Desen Zheng; Hongsheng Zhang; Sigrid Carle; Guixia Hao; Michele R. Holden; Thomas J. Burr

A Tn5 mutant of Agrobacterium vitis F2/5 (M1154) differs from the wild-type strain in that it has lost its abilities to cause necrosis on grape and a hypersensitive-like response (HR) on tobacco. The Tn5 insertion occurred in an open reading frame (ORF) aviR that is homologous to genes encoding the LuxR family of transcriptional regulators, thereby suggesting that the HR and necrosis are regulated by a quorum-sensing system. Fewer N-acyl-homoserine lactone autoinducers were detected in extracts from M1154 compared with extracts from F2/5 and from aviR-complemented M1154. The complemented mutant regained full ability to cause grape necrosis and HR. Eighteen ORFs located on a 36.6-kb insert in cosmid clone CPB221, which includes aviR, were sequenced and aligned with homologous genes from A. tumefaciens C58 and Sinorhizobium meliloti Rm1021. The order of several clustered genes is conserved among the bacteria; however, rearrangements are also apparent. Reverse transcriptase-polymerase chain reaction analysis indicated that ORF2 and ORF14 may be regulated by an aviR-encoded transcriptional regulator. Single site-directed mutations in each of the ORFs, however, had no effect on expression of HR or necrosis as compared with the wild-type parent.


Phytopathology | 1997

Biological control of grape crown gall by strain f2/5 is not associated with agrocin production or competition for attachment sites on grape cells.

Thomas J. Burr; Cheryl L. Reid; E. Tagliati; Carlo Bazzi; S. Süle

ABSTRACT Agrocin-minus mutants of nontumorigenic Agrobacterium vitis strain F2/5 controlled grape crown gall as well as the wild-type strain, indicating that agrocin is not a major factor in the mechanism of biological control. Relative levels of attachment to grape cells by tumorigenic and biocontrol strains were also measured. Attachment of tumorigenic strains (CG49 and K306) and biological control strains (F2/5 and agrocin-minus mutant 1077) was often reduced when mixtures of the strains were applied. However, high populations (10(3) to 10(5) CFU/ml) of all strains attached following mixed inoculations, suggesting that competition for attachment sites is also not a factor in the mechanism of biological control. Transfer of T-DNA to grape by CG49 was prevented or greatly inhibited in the presence of F2/5 or 1077 as measured by expression of the GUS reporter gene. The Ti plasmid virulence genes, however, were induced by exudates from grape shoots that had been inoculated with F2/5. Sonicated and autoclaved preparations of F2/5 and 1077 did not control crown gall or inhibit T-DNA transfer. Control by F2/5 is specific to grape, since gall formation on tomato, sunflower, and Kalanchoe daigremontiana were not inhibited.

Collaboration


Dive into the Thomas J. Burr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciana Cursino

Hobart and William Smith Colleges

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Mowery

Hobart and William Smith Colleges

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge