Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Lisbôa da Motta is active.

Publication


Featured researches published by Leonardo Lisbôa da Motta.


The International Journal of Neuropsychopharmacology | 2012

Peripheral oxidative damage in early-stage mood disorders: a nested population-based case-control study

Pedro Vieira da Silva Magalhães; Karen Jansen; Ricardo Tavares Pinheiro; Gabriela Delevati Colpo; Leonardo Lisbôa da Motta; Fábio Klamt; Ricardo Azevedo da Silva; Flávio Kapczinski

Systemic toxicity is a relevant dimension of pathophysiology in bipolar disorder, and oxidative damage is one potential link between central and peripheral pathology. Although there is mounting evidence that chronic bipolar disorder is associated with oxidative stress, studies in the early stages of bipolar disorder are scarce, and heavily reliant on clinical in lieu of population studies. The objective of this study was to confirm leading hypotheses about the role of oxidative damage in bipolar disorder. To that end, we nested a case-control study in a population-based study of young adults aged 18-24 yr. After an initial psychopathology screen, all people with a lifetime history of (hypo)mania and matched controls underwent a structured diagnostic interview. This yielded a sample of 231 participants, in whom we measured serum protein carbonyl content (PCC) and thiobarbituric acid reactive substances (TBARS). People with bipolar disorder had higher PCC levels than healthy subjects. Those with major depression were not different from control subjects in either PCC or TBARS levels. Both bipolar disorder and major depression were associated with higher PCC levels in the a priori regression model controlling for possible confounders. These findings indicate that protein oxidative damage is present from early stages and can be seen as a sign of early illness activity in mood disorders.


Experimental Lung Research | 2009

VITAMIN A SUPPLEMENTATION INDUCES OXIDATIVE STRESS AND DECREASES THE IMMUNOCONTENT OF CATALASE AND SUPEROXIDE DISMUTASE IN RAT LUNGS

Matheus Augusto de Bittencourt Pasquali; Daniel Pens Gelain; Marcos Roberto de Oliveira; Guilherme Antônio Behr; Leonardo Lisbôa da Motta; Ricardo Fagundes da Rocha; Fábio Klamt; José Cláudio Fonseca Moreira

Lungs require an adequate supply of vitamin A for normal embryonic development, postnatal maturation, and maintenance and repair during adult life. However, recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer, although the mechanisms underlying this effect are still unknown. Here, the authors studied the effect of vitamin A supplementation on oxidative stress parameters in lungs of Wistar rats. Vitamin A supplementation either at therapeutic (1000 and 2500 IU/kg) or excessive (4500 and 9000 IU/kg) doses for 28 days induced lipid peroxidation, protein carbonylation, and oxidation of protein thiol groups, as well as change in catalase (EC 1.11.1.6; CAT) and superoxide dismutase (EC 1.15.1.1, SOD) activities and immunocontents. These results altogether suggest that vitamin A supplementation causes significant changes in redox balance the free radical status in lungs, which are frequently associated to severe lung dysfunction.


Journal of Medicinal Food | 2009

Vitamin A supplementation for different periods alters oxidative parameters in lungs of rats.

Matheus Augusto de Bittencourt Pasquali; Daniel Pens Gelain; Marcos Roberto de Oliveira; Guilherme Antônio Behr; Leonardo Lisbôa da Motta; Ricardo Fagundes da Rocha; Fábio Klamt; José Cláudio Fonseca Moreira

Lungs require an adequate supply of vitamin A (retinol) for normal embryonic development, postnatal maturation, and maintenance and repair during adult life. However, recent intervention studies revealed that supplementation with retinoids resulted in higher incidence of lung cancer, although the mechanisms underlying this effect are still unknown. Here, we studied the effect of vitamin A supplementation on oxidative stress parameters in lungs of Wistar rats. Vitamin A supplementation at either therapeutic (1,000 and 2,500 IU/kg) or excessive (4,500 and 9,000 IU/kg) doses for 3, 7, or 28 days induced lipid peroxidation, protein carbonylation, and oxidation of protein thiol groups, as well as change in catalase and superoxide dismutase activity. Together, these results suggest that vitamin A supplementation causes significant changes in redox balance, which are frequently associated with severe lung dysfunction.


PLOS ONE | 2012

Increased Oxidative Damage in Carriers of the Germline TP53 p.R337H Mutation

Gabriel de Souza Macedo; Leonardo Lisbôa da Motta; Juliana Giacomazzi; Cristina Brinckmann Oliveira Netto; Vanusa Manfredini; Camila Simioni Vanzin; Carmen Regla Vargas; Pierre Hainaut; Fábio Klamt; Patricia Ashton-Prolla

Germline mutations in TP53 are the underlying defect of Li-Fraumeni Syndrome (LFS) and Li-Fraumeni-like (LFL) Syndrome, autosomal dominant disorders characterized by predisposition to multiple early onset cancers. In Brazil, a variant form of LFS/LFL is commonly detected because of the high prevalence of a founder mutation at codon 337 in TP53 (p.R337H). The p53 protein exerts multiple roles in the regulation of oxidative metabolism and cellular anti-oxidant defense systems. Herein, we analyzed the redox parameters in blood samples from p.R337H mutation carriers (C, n = 17) and non-carriers (NC, n = 17). We identified a significant increase in erythrocyte GPx activity and in plasma carbonyl content,an indicator of protein oxidative damage, in mutation carriers compared to non-carriers (P = 0.048 and P = 0.035, respectively). Mutation carriers also showed a four-fold increase in plasma malondialdehyde levels, indicating increased lipid peroxidation (NC = 40.20±0.71, C = 160.5±0.88, P<0.0001). Finally, carriers showed increased total antioxidant status but a decrease in plasma ascorbic acid content. The observed imbalance could be associated with deregulated cell bioenergetics and/or with increased inflammatory stress, two effects that may result from loss of wild-type p53 function. These findings provide the first evidence that oxidative damage occurs in carriers of a germline TP53 mutation, and these may have important implications regarding our understanding of the mechanisms responsible for germline TP53 p.R337H mutation-associated carcinogenesis.


Neurotoxicity Research | 2017

RA Differentiation Enhances Dopaminergic Features, Changes Redox Parameters, and Increases Dopamine Transporter Dependency in 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

Fernanda Martins Lopes; Leonardo Lisbôa da Motta; Marco Antônio De Bastiani; Bianca Pfaffenseller; Bianca Wollenhaupt de Aguiar; Luiz Felipe de Souza; Geancarlo Zanatta; Daiani Machado de Vargas; Patrícia Schonhofen; Giovana Ferreira Londero; Liana Marengo de Medeiros; V. N. Freire; Alcir Luiz Dafre; Mauro A. A. Castro; Richard B. Parsons; Fábio Klamt

Research on Parkinson’s disease (PD) and drug development is hampered by the lack of suitable human in vitro models that simply and accurately recreate the disease conditions. To counteract this, many attempts to differentiate cell lines, such as the human SH-SY5Y neuroblastoma, into dopaminergic neurons have been undertaken since they are easier to cultivate when compared with other cellular models. Here, we characterized neuronal features discriminating undifferentiated and retinoic acid (RA)-differentiated SH-SYSY cells and described significant differences between these cell models in 6-hydroxydopamine (6-OHDA) cytotoxicity. In contrast to undifferentiated cells, RA-differentiated SH-SY5Y cells demonstrated low proliferative rate and a pronounced neuronal morphology with high expression of genes related to synapse vesicle cycle, dopamine synthesis/degradation, and of dopamine transporter (DAT). Significant differences between undifferentiated and RA-differentiated SH-SY5Y cells in the overall capacity of antioxidant defenses were found; although RA-differentiated SH-SY5Y cells presented a higher basal antioxidant capacity with high resistance against H2O2 insult, they were twofold more sensitive to 6-OHDA. DAT inhibition by 3α-bis-4-fluorophenyl-methoxytropane and dithiothreitol (a cell-permeable thiol-reducing agent) protected RA-differentiated, but not undifferentiated, SH-SY5Y cells from oxidative damage and cell death caused by 6-OHDA. Here, we demonstrate that undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes and also have dissimilar mechanisms in 6-OHDA cytotoxicity. Hence, our data support the use of RA-differentiated SH-SY5Y cells as an in vitro model of PD. This study may impact our understanding of the pathological mechanisms of PD and the development of new therapies and drugs for the management of the disease.


Tumor Biology | 2016

In vitro evaluation of antitumoral efficacy of catalase in combination with traditional chemotherapeutic drugs against human lung adenocarcinoma cells

Valeska Aguiar de Oliveira; Leonardo Lisbôa da Motta; Marco Antônio De Bastiani; Fernanda Martins Lopes; Carolina Beatriz Müller; Bernardo Papini Gabiatti; Fernanda Stapenhorst França; Mauro Antônio Alves Castro; Fábio Klamt

Lung cancer is the most lethal cancer-related disease worldwide. Since survival rates remain poor, there is an urgent need for more effective therapies that could increase the overall survival of lung cancer patients. Lung tumors exhibit increased levels of oxidative markers with altered levels of antioxidant defenses, and previous studies demonstrated that the overexpression of the antioxidant enzyme catalase (CAT) might control tumor proliferation and aggressiveness. Herein, we evaluated the effect of CAT treatment on the sensitivity of A549 human lung adenocarcinoma cells toward various anticancer treatments, aiming to establish the best drug combination for further therapeutic management of this disease. Exponentially growing A549 cells were treated with CAT alone or in combination with chemotherapeutic drugs (cisplatin, 5-fluorouracil, paclitaxel, daunorubicin, and hydroxyurea). CalcuSyn® software was used to assess CAT/drug interactions (synergism or antagonism). Growth inhibition, NFκB activation status, and redox parameters were also evaluated in CAT-treated A549 cells. CAT treatment caused a cytostatic effect, decreased NFκB activation, and modulated the redox parameters evaluated. CAT treatment exhibited a synergistic effect among most of the anticancer drugs tested, which is significantly correlated with an increased H2O2 production. Moreover, CAT combination caused an antagonism in paclitaxel anticancer effect. These data suggest that combining CAT (or CAT analogs) with traditional chemotherapeutic drugs, especially cisplatin, is a promising therapeutic strategy for the treatment of lung cancer.


Behavioural Brain Research | 2009

Decreased anxiety-like behavior and locomotor/exploratory activity, and modulation in hypothalamus, hippocampus, and frontal cortex redox profile in sexually receptive female rats after short-term exposure to male chemical cues.

Guilherme Antônio Behr; Leonardo Lisbôa da Motta; Marcos Roberto de Oliveira; Max William Soares Oliveira; Mariana Leivas Müller Hoff; Roberta Bristot Silvestrin; José Cláudio Fonseca Moreira

Chemical cues are widely used for intraspecific social communication in a vast majority of living organisms ranging from bacteria to mammals. As an example, mammals release olfactory cues with urine that promote neuroendocrine modulations with changes in behavior and physiology in the receiver. In this work, four-month-old Wistar (regular 4-day cyclic) virgin female rats were utilized in the proestrus-to-estrus phase of the reproductive cycle for experimental exposure. In an isolated room, female rats were exposed for 90 min to male-soiled bedding (MSB). Elevated plus-maze assay, open field test, and light/dark box task were performed to analyze behavioral alterations on females after exposure. For biochemical assays, female rats were killed and the hypothalamus, hippocampus, and frontal cortex were isolated for further analysis. Antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase), non-enzymatic antioxidant defense measurements (TRAP and TAR), and the oxidative damage parameters (TBARS, Carbonyl and SH content) were analyzed. In behavioral analyses we observe that female rats show decreased anxiety and locomotory/exploratory activities after MSB exposure. In biochemical assays we observed an increase in both enzymatic and non-enzymatic antioxidant defenses in different central nervous system (CNS) structures analyzed 30 and 90 min after MSB exposure. Furthermore, hippocampus and frontal cortex showed diminished free radical oxidative damage at 180 and 240 min after exposure. These results provide the first evidence that oxidative profile of female CNS structures are altered by chemical cues present in the MSB, thus suggesting that pheromonal communication is able to modulate radical oxygen species production and/or clearance in the female brain.


Tumor Biology | 2015

Oxidative stress associates with aggressiveness in lung large-cell carcinoma

Leonardo Lisbôa da Motta; Marco Antônio De Bastiani; Fernanda Stapenhorst; Fábio Klamt

Oxidative stress is involved in many cancer-related processes; however, current therapeutics are unable to benefit from this approach. The lungs have a very exquisite redox environment that may contribute to the frequent and deadly nature of lung cancer. Very few studies specifically address lung large-cell carcinoma (LCC), even though this is one of the major subtypes. Using bioinformatic (in silico) tools, we demonstrated that a more aggressive lung LCC cell line (HOP-92) has an overall increase activity of the human antioxidant gene (HAG) network (P = 0.0046) when compared to the less aggressive cell line H-460. Gene set enrichment analysis (GSEA) showed that the expression of metallothioneins (MT), glutathione peroxidase 1 (GPx-1), and catalase (CAT) are responsible for this difference in gene signature. This was validated in vitro, where HOP-92 showed a pro-oxidative imbalance, presenting higher antioxidant enzymes (superoxide dismutase (SOD), CAT, and GPx) activities, lower reduced sulfhydryl groups and antioxidant potential, and higher lipoperoxidation and reactive species production. Also, HAG network is upregulated in lung LCC patients with worst outcome. Finally, the prognostic value of genes enriched in the most aggressive cell line was assessed in this cohort. Isoforms of metallothioneins are associated with bad prognosis, while the thioredoxin-interacting protein (TXNIP) is associated with good prognosis. Thus, redox metabolism can be an important aspect in lung LCC aggressiveness and a possible therapeutic target.


Neuromolecular Medicine | 2017

Mimicking Parkinson’s Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models

Fernanda Martins Lopes; Ivi Juliana Bristot; Leonardo Lisbôa da Motta; Richard B. Parsons; Fábio Klamt

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD—tremor at rest, bradykinesia and rigidity—once 50–70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.


Oncotarget | 2016

Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis.

Candelaria Bracalente; Noelia Salguero; Cintia Notcovich; Carolina Beatriz Müller; Leonardo Lisbôa da Motta; Fábio Klamt; Irene L. Ibañez; Hebe Durán

Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.

Collaboration


Dive into the Leonardo Lisbôa da Motta's collaboration.

Top Co-Authors

Avatar

Fábio Klamt

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Guilherme Antônio Behr

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

José Cláudio Fonseca Moreira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Marcos Roberto de Oliveira

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Marco Antônio De Bastiani

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Fernanda Martins Lopes

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Max William Soares Oliveira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carolina Beatriz Müller

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Daniel Pens Gelain

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Gabriela Trindade Perry

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge