Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Salviati is active.

Publication


Featured researches published by Leonardo Salviati.


Cell | 2013

Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency

Sara Cogliati; Christian Frezza; Maria Eugenia Soriano; Tatiana Varanita; Rubén Quintana-Cabrera; Mauro Corrado; Sara Cipolat; Veronica Costa; Alberto Casarin; Ligia C. Gomes; Ester Perales-Clemente; Leonardo Salviati; Patricio Fernández-Silva; José Antonio Enríquez; Luca Scorrano

Summary Respiratory chain complexes assemble into functional quaternary structures called supercomplexes (RCS) within the folds of the inner mitochondrial membrane, or cristae. Here, we investigate the relationship between respiratory function and mitochondrial ultrastructure and provide evidence that cristae shape determines the assembly and stability of RCS and hence mitochondrial respiratory efficiency. Genetic and apoptotic manipulations of cristae structure affect assembly and activity of RCS in vitro and in vivo, independently of changes to mitochondrial protein synthesis or apoptotic outer mitochondrial membrane permeabilization. We demonstrate that, accordingly, the efficiency of mitochondria-dependent cell growth depends on cristae shape. Thus, RCS assembly emerges as a link between membrane morphology and function.


Nature Protocols | 2012

Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells

Marco Spinazzi; Alberto Casarin; Vanessa Pertegato; Leonardo Salviati; Corrado Angelini

The assessment of mitochondrial respiratory chain (RC) enzymatic activities is essential for investigating mitochondrial function in several situations, including mitochondrial disorders, diabetes, cancer, aging and neurodegeneration, as well as for many toxicological assays. Muscle is the most commonly analyzed tissue because of its high metabolic rates and accessibility, although other tissues and cultured cell lines can be used. We describe a step-by-step protocol for a simple and reliable assessment of the RC enzymatic function (complexes I–IV) for minute quantities of muscle, cultured cells and isolated mitochondria from a variety of species and tissues, by using a single-wavelength spectrophotometer. An efficient tissue disruption and the choice for each assay of specific buffers, substrates, adjuvants and detergents in a narrow concentration range allow maximal sensitivity, specificity and linearity of the kinetics. This protocol can be completed in 3 h.


American Journal of Human Genetics | 2006

A Mutation in Para-Hydroxybenzoate-Polyprenyl Transferase (COQ2) Causes Primary Coenzyme Q10 Deficiency

Catarina M. Quinzii; Ali Naini; Leonardo Salviati; Eva Trevisson; Plácido Navas; Salvatore DiMauro; Michio Hirano

Ubiquinone (coenzyme Q(10) or CoQ(10)) is a lipid-soluble component of virtually all cell membranes, where it functions as a mobile electron and proton carrier. CoQ(10) deficiency is inherited as an autosomal recessive trait and has been associated with three main clinical phenotypes: a predominantly myopathic form with central nervous system involvement, an infantile encephalomyopathy with renal dysfunction, and an ataxic form with cerebellar atrophy. In two siblings of consanguineous parents with the infantile form of CoQ(10) deficiency, we identified a homozygous missense mutation in the COQ2 gene, which encodes para-hydroxybenzoate-polyprenyl transferase. The A-->G transition at nucleotide 890 changes a highly conserved tyrosine to cysteine at amino acid 297 within a predicted transmembrane domain. Radioisotope assays confirmed a severe defect of CoQ(10) biosynthesis in the fibroblasts of one patient. This mutation in COQ2 is the first molecular cause of primary CoQ(10) deficiency.


Journal of Clinical Investigation | 2011

COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness

Saskia F. Heeringa; Gil Chernin; Moumita Chaki; Weibin Zhou; Alexis Sloan; Ji Z; Letian X. Xie; Leonardo Salviati; Toby W. Hurd; Vega-Warner; Killen Pd; Raphael Y; Shazia Ashraf; Bugsu Ovunc; Dominik S. Schoeb; Heather M. McLaughlin; Rannar Airik; Christopher N. Vlangos; Rasheed Gbadegesin; Bernward Hinkes; Pawaree Saisawat; Eva Trevisson; Mara Doimo; Alberto Casarin; Pertegato; Giorgi G; Holger Prokisch; Agnès Rötig; Gudrun Nürnberg; Christian Becker

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme Q10 biosynthesis monooxygenase 6 (COQ6) in 13 individuals from 7 families by homozygosity mapping. Each mutation was linked to early-onset SRNS with sensorineural deafness. The deleterious effects of these human COQ6 mutations were validated by their lack of complementation in coq6-deficient yeast. Furthermore, knockdown of Coq6 in podocyte cell lines and coq6 in zebrafish embryos caused apoptosis that was partially reversed by coenzyme Q10 treatment. In rats, COQ6 was located within cell processes and the Golgi apparatus of renal glomerular podocytes and in stria vascularis cells of the inner ear, consistent with an oto-renal disease phenotype. These data suggest that coenzyme Q10-related forms of SRNS and hearing loss can be molecularly identified and potentially treated.


Autophagy | 2009

Coenzyme Q deficiency triggers mitochondria degradation by mitophagy

Ángeles Rodríguez-Hernández; Mario D. Cordero; Leonardo Salviati; Rafael Artuch; Mercè Pineda; Paz Briones; Lourdes Gómez Izquierdo; David Cotán; Plácido Navas; José A. Sánchez-Alcázar

Coenzyme Q10 (CoQ) is a small lipophilic molecule critical for the transport of electrons from complexes I and II to complex III in the mitochondrial respiratory chain. CoQ deficiency is a rare human genetic condition that has been associated with a variety of clinical phenotypes. With the aim of elucidating how CoQ deficiency affects an organism, we have investigated the pathophysiologic processes present within fibroblasts derived from 4 patients with CoQ deficiency. Assays of cultured fibroblasts revealed decreased activities of complex II+III, complex III, and complex IV, reduced expression of mitochondrial proteins involved in oxidative phosphorylation, decreased mitochondrial membrane potential, increased production of reactive oxygen species (ROS), activation of mitochondrial permeability transition (MPT), and reduced growth rates. These abnormalities were partially restored by CoQ supplementation. Moreover, we demonstrate that CoQ deficient fibroblasts exhibited increased levels of lysosomal markers (β-galactosidase, cathepsin, LC3, and Lyso Tracker), and enhanced expression of autophagic genes at both transcriptional and translational levels, indicating the presence of autophagy. Electron microscopy studies confirmed a massive degradation of the altered mitochondria by mitophagy. Autophagy in CoQ deficient fibroblasts was abolished by antioxidants or cyclosporin treatments suggesting that both ROS and MPT participate in this process. Furthermore, prevention of autophagy in CoQ deficient fibroblasts by 3-methyl adenine or wortmannin, as well as the induction of CoQ deficiency in cells lacking autophagy (by means of genetic knockout of the Atg5 gene in mouse embryonic fibroblasts) resulted in apoptotic cell death, suggesting a protective role of autophagy in CoQ deficiency.


Neurology | 2002

Mitochondrial DNA depletion Mutations in thymidine kinase gene with myopathy and SMA

Michelangelo Mancuso; Leonardo Salviati; S. Sacconi; D. Otaegui; Pilar Camaño; Alberto Marina; S. Bacman; C.T. Moraes; J.R. Carlo; M. Garcia; M. Garcia-Alvarez; L. Monzon; Ali Naini; Michio Hirano; Eduardo Bonilla; A.L. Taratuto; Salvatore DiMauro; Tuan Vu

Background: The mitochondrial DNA (mtDNA) depletion syndrome (MDS) is an autosomal recessive disorder of early childhood characterized by decreased mtDNA copy number in affected tissues. Recently, MDS has been linked to mutations in two genes involved in deoxyribonucleotide (dNTP) metabolism: thymidine kinase 2 (TK2) and deoxy-guanosine kinase (dGK). Mutations in TK2 have been associated with the myopathic form of MDS, and mutations in dGK with the hepatoencephalopathic form. Objectives: To further characterize the frequency and clinical spectrum of these mutations, the authors screened 20 patients with myopathic MDS. Results: No patient had dGK gene mutations, but four patients from two families had TK2 mutations. Two siblings were compound heterozygous for a previously reported H90N mutation and a novel T77M mutation. The other siblings harbored a homozygous I22M mutation, and one of them had evidence of lower motor neuron disease. The pathogenicity of these mutations was confirmed by reduced TK2 activity in muscle (28% to 37% of controls). Conclusions: These results show that the clinical expression of TK2 mutations is not limited to myopathy and that the myopathic form of MDS is genetically heterogeneous.


Journal of Clinical Investigation | 2013

ADCK4 mutations promote steroid-Resistant nephrotic syndrome through CoQ10 biosynthesis disruption

Shazia Ashraf; Heon Yung Gee; Stéphanie Woerner; Letian X. Xie; Virginia Vega-Warner; Svjetlana Lovric; Humphrey Fang; Xuewen Song; Daniel C. Cattran; Carmen Avila-Casado; Andrew D. Paterson; Patrick Nitschke; Christine Bole-Feysot; Pierre Cochat; Julian Esteve-Rudd; Birgit Haberberger; Susan J. Allen; Weibin Zhou; Rannar Airik; Edgar A. Otto; Moumita Barua; Mohamed Al-Hamed; Jameela A. Kari; Jonathan Evans; Agnieszka Bierzynska; Moin A. Saleem; Detlef Bockenhauer; Robert Kleta; Sherif El Desoky; Duygu Övünç Hacıhamdioğlu

Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10.


Neurology | 2005

Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition.

Leonardo Salviati; Sabrina Sacconi; Luisa Murer; Graziella Zacchello; L. Franceschini; A. M. Laverda; Giuseppe Basso; Catarina M. Quinzii; Corrado Angelini; Michio Hirano; Ali Naini; Plácido Navas; Salvatore DiMauro; Giovanni Montini

Coenzyme Q10 (CoQ10) deficiency has been associated with various clinical phenotypes, including an infantile multisystem disorder. The authors report a 33-month-old boy who presented with corticosteroid-resistant nephrotic syndrome in whom progressive encephalomyopathy later developed. CoQ10 was decreased both in muscle and in fibroblasts. Oral CoQ10 improved the neurologic picture but not the renal dysfunction.


The FASEB Journal | 2008

Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency

Catarina M. Quinzii; Luis C. López; Jakob Von-Moltke; Ali Naini; Sindu Krishna; Markus Schuelke; Leonardo Salviati; Plácido Navas; Salvatore DiMauro; Michio Hirano

Coenzyme Q10 (CoQ10) is essential for electron transport in the mitochondrial respiratory chain and antioxidant defense. Last year, we re ported the first mutations in CoQ10 biosynthetic genes, COQ2, which encodes 4‐parahydroxybenzoate: polyprenyl transferase;and PDSS2, which encodes subunit 2 of decaprenyl diphosphate synthase. How ever, the pathogenic mechanisms of primary CoQ10deficiency have not been well characterized. In this study, we investigated the consequence of severe CoQ10 deficiency on bioenergetics, oxidative stress, and antioxidant defenses in cultured skin fibroblasts harboring COQ2 and PDSS2 mutations. Defects in the first two committed steps of the CoQ10 biosynthetic pathway produce different biochemical alterations. PDSS2 mutant fibroblasts have 12% CoQ10 relative to control cells and markedly reduced ATP synthesis, but do not show increased reactive oxygen species (ROS) production, signs of oxidative stress, or in creased antioxidant defense markers. In contrast, COQ2 mutant fibroblasts have 30% CoQ10 with par tial defect in ATP synthesis, as well as significantly increased ROS production and oxidation of lipids and proteins. On the basis of a small number of cell lines, our results suggest that primary CoQ10 defi ciencies cause variable defects of ATP synthesis and oxidative stress, which may explain the different clinical features and may lead to more rational therapeutic strategies.— Quinzii, C. M., López, L. C., Von‐Moltke, J., Naini, A., Krishna, S., Schuelke, M., Salviati, L., Navas, P., DiMauro, S., Hirano, M. Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J. 22, 1874–1885 (2008)


The FASEB Journal | 2010

Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency

Catarina M. Quinzii; Luis C. López; Robert W. Gilkerson; Beatriz Dorado; Jorida Coku; Ali Naini; Clotilde Lagier-Tourenne; Markus Schuelke; Leonardo Salviati; Rosalba Carrozzo; Filippo M. Santorelli; Shamima Rahman; Meriem Tazir; Michel Koenig; Salvatore DiMauro; Michio Hirano

Coenzyme Q10 (CoQ10) is essential for electron transport in the mitochondrial respiratory chain and antioxidant defense. The relative importance of respiratory chain defects, ROS production, and apoptosis in the pathogenesis of CoQ10 deficiency is unknown. We determined previously that severe CoQ10 deficiency in cultured skin fibroblasts harboring COQ2 and PDSS2 mutations produces divergent alterations of bioenergetics and oxidative stress. Here, to better understand the pathogenesis of CoQ10 deficiency, we have characterized the effects of varying severities of CoQ10 deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ10 biosynthesis. Levels of CoQ10 seem to correlate with ROS production;10‐15% and >60% residual CoQ10 are not associated with significant ROS production, whereas 30‐50% residual CoQ10 is accompanied by increased ROS production and cell death. Our results confirm that varying degrees of CoQ10 deficiency cause variable defects of ATP synthesis and oxidative stress. These findings may lead to more rational therapeutic strategies for CoQ10 deficiency.— Quinzii, C. M., Lopez, L. C., Gilkerson, R. W., Dorado, B., Coku, J., Naini, A. B., Lagier‐Tourenne, C., Schuelke, M., Salviati, L., Carrozzo, R., Santorelli, F., Rahman, S., Tazir, M., Koenig, M., DiMauro, S., Hirano, M. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J. 24, 3733–3743 (2010). www.fasebj.org

Collaboration


Dive into the Leonardo Salviati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabrina Sacconi

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Salvatore DiMauro

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Plácido Navas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michio Hirano

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge